
The Computer Science Handbook
By: Michael Young

The Computer Science Handbook

Michael Young

May 8, 2015

i

Thanks to:
Dr. Yuli Ye, for teaching me

Gord Ridout, for encouraging me to make this book

Contents

1 Getting Started 9
1.1 Getting Started 9

1.1.1 Format . 10

2 Interviews 11
2.1 Interviews . 11

2.1.1 Interview Preparation 11
2.1.2 Resume . 12
2.1.3 Before the Interview 12
2.1.4 During the Interview - Part 1: Behavioural 13
2.1.5 During the Interview - Part 2: Technical . . 14
2.1.6 End Interview 15

I Fundamentals 17

3 Fundamentals 18
3.1 Runtime and Memory 18

3.1.1 Limits . 19
3.1.2 Big O Notation 19
3.1.3 Runtime and Memory Analysis 21
3.1.4 Exercises 26

1

CONTENTS 2

II Recursion 27

4 Recursion 28
4.1 Recursion . 28

4.1.1 Factorial . 29
4.1.2 Sum of digits of a string 31
4.1.3 Count . 33
4.1.4 Calculate Exponential 35
4.1.5 Exercises 37

4.2 Advanced Recursion 37
4.2.1 Number of paths 37
4.2.2 Towers of Hanoi 40
4.2.3 Permutations 47
4.2.4 Exercises 51

III Data Structures 52

5 Stack 55
5.1 Stack . 55
5.2 Vector . 57

5.2.1 Class . 57
5.2.2 Resize . 58
5.2.3 Add Element 58
5.2.4 Pop . 59
5.2.5 Remove . 60
5.2.6 Get Element 60
5.2.7 Insert Element 61
5.2.8 Exercises 62

5.3 Exercises . 63

6 Queue 64
6.1 Queue . 64
6.2 Linked List . 66

6.2.1 Link Class 67

CONTENTS 3

6.2.2 LinkedList Class 67
6.2.3 Push . 68
6.2.4 Pop . 69
6.2.5 Get . 70
6.2.6 Delete . 72
6.2.7 Exercises 72

6.3 Exercises . 74

7 Sets 75
7.1 Sets . 75
7.2 Hash Set . 76

7.2.1 Class . 77
7.2.2 Hash code 78
7.2.3 Resize . 79
7.2.4 Insert . 80
7.2.5 Contains . 82
7.2.6 Remove . 83
7.2.7 Exercises 86

7.3 Tree Set . 86
7.4 Binary Search Tree 87

7.4.1 Class . 88
7.4.2 Insert . 90
7.4.3 Contains . 93
7.4.4 Remove . 95
7.4.5 Print Tree 102
7.4.6 Exercises 103

7.5 Exercises . 103

8 Maps 104
8.1 Maps . 104
8.2 Hash Map . 105

8.2.1 Class . 105
8.2.2 Resize . 106
8.2.3 Put . 107

CONTENTS 4

8.2.4 Get . 108
8.2.5 Remove . 109
8.2.6 Exercises 109

8.3 Tree Map . 109
8.3.1 Exercise . 110

8.4 Exercises . 111

9 Priority Queue 112
9.1 Priority Queue 112
9.2 Heap . 113

9.2.1 Class . 115
9.2.2 Resize . 115
9.2.3 Swap . 115
9.2.4 Push . 116
9.2.5 Pop . 118
9.2.6 Heapify . 122
9.2.7 Exercises 122

9.3 Exercises . 122

IV Sorting 124

10 Slow Sorts 126
10.1 Bubble Sort . 126

10.1.1 Implementation 127
10.2 Selection Sort . 128

10.2.1 Implementation 128
10.3 Insertion Sort . 129

10.3.1 Implementation 129

11 Fast Sorts 132
11.1 Heap Sort . 132

11.1.1 Implementation 133
11.2 Merge Sort . 133

11.2.1 Implementation 134

CONTENTS 5

11.2.2 Exercises 137
11.3 Quick Sort . 137

11.3.1 Implementation 138
11.3.2 Exercises 140

12 Super Slow Sorts 141
12.1 Bozo Sort . 141

12.1.1 Implementation 141
12.2 Permutation Sort 142

12.2.1 Implementation 143
12.3 Miracle Sort . 143

12.3.1 Implementation 143

13 Exercises 145

V Graph Theory 146

14 Graph Representations 149
14.1 Adjacency Matrix 149

14.1.1 Implementation 150
14.2 Adjacency List 151

14.2.1 Implementation 152

15 Shortest Path 153
15.1 Dijkstra’s . 154

15.1.1 Implementation 155
15.1.2 Practice Exercises 160

15.2 Bellman Ford . 160
15.2.1 Implementation 160
15.2.2 Exercises 165

15.3 Floyd Warsahll 166
15.3.1 Implementation 166
15.3.2 Exercises 169

CONTENTS 6

16 Minimum Spanning Tree 170
16.1 Prim’s . 171

16.1.1 Implementation 171
16.1.2 Exercises 176

16.2 Kruskal . 177
16.2.1 Implementation 177
16.2.2 Exercises 182

16.3 Exercises . 182

17 Topological Sorting 183
17.1 Topological Sorting 183

17.1.1 Implementation 184

18 Connected Components 186
18.1 Connected Components 186

18.1.1 Implementation 186

19 Cycle Detection 192
19.1 Cycle Detection 192

19.1.1 Implementation 193

VI Searches 195

20 Searches 196
20.1 Binary Search . 196

20.1.1 Example . 197
20.1.2 Generic Binary Search 198
20.1.3 Finding Number in Sorted Array 199
20.1.4 Exercises 200

20.2 Ternary Search 200
20.2.1 Implementation 201

20.3 Depth First Search 208
20.3.1 Implementation 209
20.3.2 Exercises 212

CONTENTS 7

20.4 Breadth First Search 212
20.4.1 Implementation 213
20.4.2 Exercises 214

20.5 Flood Fill . 214
20.5.1 Bucket Fill 215
20.5.2 Exercises 220

20.6 Backtracking . 221
20.6.1 General Solution 222
20.6.2 List all sets 223
20.6.3 N Queen Problem 227
20.6.4 Exercises 235

VII Dynamic Programming 236

21 Dynamic Programming 237
21.1 Dynamic Programming 237

21.1.1 Fibonacci Sequence 238
21.1.2 Coin Problem 240
21.1.3 Number of Paths 246
21.1.4 Knapsack Problem 247
21.1.5 Exercises 252

21.2 Advanced Dynamic Programming 253
21.2.1 Longest Common Subsequence 253
21.2.2 Zero-One Knapsack Problem 256

VIII Greedy Algorithm 258

22 Greedy Algorithm 259
22.1 Greedy Algorithm 259

22.1.1 Coin Problem 259
22.1.2 Interval Scheduling 260
22.1.3 Couple Matching Problem 263
22.1.4 Exercises 264

CONTENTS 8

A Cheat Sheet 266

Chapter 1

Getting Started

1.1 Getting Started

The Computer Science handbook is a handbook designed to ex-
plain algorithms and data structures in a way that anyone can
understand. Many websites (e.g. Wikipedia) contain lengthy and
wordy explanations that are full of technical jargon. I have tried
my hardest to simplify language to make it easy to read without
a strong math or computer science background. I hope to share
my knowledge with you and I hope you will learn something new
from reading this!

Before you get started with this handbook, it is highly recom-
mended that you are already familiar with Java or C++ syntax.
This handbook is not meant for learning programming basics since
there are other resources better suited for that material.

9

CHAPTER 1. GETTING STARTED 10

1.1.1 Format

Each article will have multiple sections to help you understand
the content.

Introduction

The introduction section gives a brief overview of what the article
is about. It will usually come with a prerequisite section which
will contain topics that will be recommended to have been read
before the article.

Implementation

The implementation section will be an implementation of the ar-
ticle in Java. It is recommended that you try to implement things
yourself first before looking at the implementation. If you truly
understand the concept, then you will never have to memorize a
single line of code. The code will come from your understanding
of how it works.

Exercises

The exercises section contains practice problems to test your un-
derstanding. Some of these questions come from real interview
questions.

Chapter 2

Interviews

2.1 Interviews

2.1.1 Interview Preparation

From personal experience, I know that programming interviews
can be quite stressful. You will be off your game because it is a
much more different environment than you are probably used to.
Many programmers are accustomed to programming alone and
focusing on just typing. However, in an interview, you will have
to code with someone who is watching you and talking to you.
In my first few interviews, I was a nervous wreck and I fumbled
through easy problems. However, in later interviews, I became
more accustomed to the process and became more comfortable
with the interviewer. As you do more interviews in your life, you
will be less nervous and become more confident in your abilities.
The more prepared you are, the more likely your chances of suc-
cess in the interview room. In this section, you will find a small
guide to rocking the interview!

11

CHAPTER 2. INTERVIEWS 12

2.1.2 Resume

Resumes are key to getting any interview in the first place and
your resume should be able to show off your abilities and talent.
Some of the key tips I have for tech companies:

• Have either one or two pages exactly

• GPA doesn’t matter unless it’s low

• Your school is not very important

• Github with interesting side projects show your abilities

• ACM / TopCoder / Programming Contests show your abil-
ities

• Put relevant work experience (e.g. marketing at a tech com-
pany will not matter when applying for a technical role)

2.1.3 Before the Interview

Preparation is the most important thing you can do for inter-
views. You can be as charming and confident as you want, but if
you cannot solve their problems, your application will quickly be
discarded. When you are given a problem, there is a chance you
have solved or read about a solution to the problem. Hence, the
more prepared you are, the more likely you can come up with a
solution. The sections in this handbook that come up the most
are: everything in Data Structures, Advanced Recursion and Bi-
nary Search. If you cover those topics, you should be set for
most interviews. However, if you are interviewing for higher end
companies, you may need to cover much more material. In some
interviews, you will be asked to code your solution, therefore I
suggest you become very familiar with a language. You should be
proficient enough to know how to do input/output, use the stan-

CHAPTER 2. INTERVIEWS 13

dard library and how to debug properly. Java is a good language
to use as it has many built in data structures and has stack traces
for debugging.

There are two types of interviews I have encountered: phone/Skype
interviews and in person. If given a choice, in person is always
preferable. When you doing an in person interview, you are able
to communicate better with your interviewer and build a rapport.
You will also be able to show your thought process on paper which
is easier to do than via phone or Skype. Additionally, depending
on the company, if they fly you down to their headquarters for
the interview, you’ll get a free trip!

If the company you are interviewing for is a startup, you can dress
casually. Otherwise, if the company is more corporate, then you
may want to dress a little more formally.

2.1.4 During the Interview - Part 1: Behavioural

The interview usually starts with introductions and then the in-
terviewer will usually ask you about projects you’ve worked on as
well as past places you have worked. A common question is: what
was the hardest part about that project and how did you solve
it. (If you do not already have a personal project, then I highly
recommend starting one. If personal projects do not interest you,
then this field may not be for you. Hackathons are a good way
of starting projects as you are able to focus a large chunk of your
time on a single project). During this first part of the interview,
try to build a better rapport with the interviewer. You should be
passionate about the work you have done and hopefully your in-
terviewer is equally passionate about their own work and be able
to relate to you. Essentially, in this part of the interview, you
need to convince your interviewer that you are a likeable person
and that they can work with you.

CHAPTER 2. INTERVIEWS 14

Like any normal interview, try to maintain eye contact and good
posture. Ask the interviewer some questions about their position
and projects they are working on. Listen and be interested in to
what they have to say.

2.1.5 During the Interview - Part 2: Technical

The second part of the interview usually consists of technical
problems. If you are expected to code the solution, you should
expect a medium to difficult problem (30-45 min) and possibly
an easy problem (5-10 minutes). However, if you are interviewing
for a large tech company (Facebook or Google) you should expect
2 - 4 medium to difficult problems that you will need to solve. If
you are not coding, then you should expect 3-4 problems where
you will need to describe the solution.

Step 1 - Analyzing the Problem (1 - 2 minutes)

When given the problem, make sure you read through the problem
carefully and that you understand the specifications. Ask your
interviewer for clarification if you are unsure of anything.

Step 2 - Find a solution (5 - 10 minutes)

Now that you understand the problem, ask yourself if you’ve seen
this problem before or any similar problem. If you have, then you
should also remember a solution or similar solution and you’re
in luck! However, if you don’t remember the solution or have
not seen the problem before, then you will need to think out the
solution. First, start with the naive solution which is usually a
bruteforce method. An inefficient solution is better then no solu-
tion. Once you have that, start working towards a more optimal

CHAPTER 2. INTERVIEWS 15

solution. You should be thinking aloud and letting the interviewer
see your thought process. You should write down your solutions
on paper so that it can be more clear to the interviewer what you
are trying to do. You should be able to explain why your solution
is more efficient than another and why it works. If your solution
is wrong, the interviewer may stop you and you should quickly
find the mistake and determine why it is wrong. Keep going as
far as you can without letting the interviewer help you. If you are
stuck, the interviewer will likely drop a hint and you should be
able to pick up from that. Once you have the best solution, you
should be confident enough to prove that it is optimal. However,
if the interviewer asks if you can do better, then it is more than
likely that there is a better solution.

Step 3 - Start coding (10 - 20 minutes)

Now that you have a solution, you need to prove to the interviewer
that you can implement it. If you are proficient enough, you
should be able to code and debug easily enough. You should
comment your code and name your variables properly so your
interviewer knows whats going on.

2.1.6 End Interview

Hopefully, you have time left before the interview (otherwise, you
took too long for the technical part). Ask your interviewer about
projects at the company to get a feel of what will interest you.
Ask them any other questions you have about the position like
any other interview. When you leave, thank the interviewer for
their time, put on a smile and shake their hand. Ultimately,
the outcome of the interview is determined by the amount of
rapport you built with the interviewer, how capable you were
at the technical problems and how enthusiastic you are. If all

CHAPTER 2. INTERVIEWS 16

goes well, you will get the job, or you will get a second round
of interviews meaning you get to repeat the same process with
another interviewer! Good luck!

Part I

Fundamentals

17

Chapter 3

Fundamentals

Before we can learn about algorithms and data structures we must
first learn how to analyze algorithms and data structures so we
can apply them to the right needs.

It is highly recommended that you understand the syntax and
control structures for Java or C++ before you continue.

3.1 Runtime and Memory

Processing time and memory are two primary resources that com-
puter programs use and it is important to analyze the limits we
have. Computers are super fast at making calculations compared
to humans, but humans have much more ”memory” than comput-
ers currently do. For example, computers can add two 100-digit
numbers together much more quickly than any human possibly
can. Standard computers have around 8GB of RAM and some
higher end machines may have 16-32GB. Although hard-disks can
store terabytes of memory, we use RAM (flash memory) when
analyzing computer memory because it is much faster than disk

18

CHAPTER 3. FUNDAMENTALS 19

storage. As an analogy, RAM can be thought of as grabbing an
object in another room whereas disk memory is driving 20 min
away to get that object.

3.1.1 Limits

There are many different methods of implementing different things
but most of the time we care most about implementations that are
the fastest and use the least amount of memory. Let’s go through
some basic benchmarks about computers that you should know.
Adding two numbers takes a nanosecond (1 billionth of a second)
for an average computer to process as of this date of writing. For
practical purposes, we’ll assume that the average computer pro-
gram can hold up to 1GB of RAM or about 250 million 32 bit
integers.

Memory Operations (per second)

1 GB (250,000,000 ints) 1,000,000,000 operations

3.1.2 Big O Notation

When we design algorithms and data structures, we are concerned
with their runtime and memory complexities. The runtime com-
plexity is the number of operations required for a program the
run. We will consider reading a unit of data, writing a unit of
data, simple arithmetic and logic operations to be a single op-
eration. For example, if we had a program that read two num-
bers, added them together and stored them the result, it would
take 2 operations to read the two numbers, 1 operation to add
the numbers and 1 more operation to store the result.The size
of the inputs determines the space and runtime complexities of
algorithms and data structures. The memory complexity is the
additional amount of data required by an algorithm or data struc-

CHAPTER 3. FUNDAMENTALS 20

ture. For example, if you had an array of 10 integers, the memory
complexity would be 10 integers.

When we compare how efficient algorithms or data structures are
to another, we want to be able to describe them such that they
can be compared by a quantifiable amount. We use a notation
called Big O notation to do this. We can use it to describe the
runtime and memory complexities of algorithms and data struc-
tures. The complexities of an algorithm or data structure will
depend on the size of its inputs. For example, if we have a pro-
gram that calculates the sum of N integers, the runtime would
take much longer if N was 1000 versus if N was 10. Thus we want
to determine how long a program will take to run or how much
memory it will use relative to the size of the inputs. The Big O
notation takes the largest factor of an input to compare compu-
tation times / memory usage. When we take the largest factor,
we ignore smaller factors, coefficients and constants because they
become insignificant at very large values. For example: O(3n2 +
12n + 20) is simply O(n2) because it is the largest factor.

Here is a list of common Big O notations based on complex-
ity:

Big O Limit of N for 1 second

O(1) Constant Time runtime independent of N
O(log N) Sublinear time a very big number
O(N) Linear Time 100,000,000
O(N log N) 5,000,000
O(N2) Quadratic Time 10000
O(N3) Cubic Time 450
O(2N) Exponential Time 27
O(N!) Factorial Time 11

Keep in mind that in a couple of years, this chart will be outdated
as technology improves.

CHAPTER 3. FUNDAMENTALS 21

3.1.3 Runtime and Memory Analysis

In a program we are usually concerned with two main factors:
runtime and memory. Runtime complexity is the amount of time
it takes for a program to run. Memory complexity is usually used
as the additional amount of memory other than the input that a
program takes. Note that if you are able to stream your input in
your program (read in chunks at a time), then the input memory
footprint will be reduced to your stream size.

Example

Suppose we have a function that has an array of size N as an
input that returns the maximum element.

// Assume that array has a positive length.

int findMax(int[] array) {

int maxVal = array[0]; //O(1) memory to store max

element, O(1) time for assignment.

for(int i = 1; i < array.length; i++) { //O(n) loop

runtime.

if (maxVal < array[i]) { //O(1) to compare.

maxVal = array[i]; //O(1) to assign new value.

}

}

return maxVal;

}

Memory: The array takes O(N) memory, and storing the max
value is O(1) more memory. However, usually when analyzing
programs, we ignore the input memory sizes and take into account
additional memory that is required to produce the output. So the
memory footprint of the function is O(1).

Time: The first assignment of maxVal takes O(1). The loop runs
N-1 times and of each of those N-1 times it checks if the current

CHAPTER 3. FUNDAMENTALS 22

array element is greater than the current max which takes O(1).
If it is greater, then we reassign maxVal which is O(1). When
analyzing time complexity, we usually take worst case so we have:
O(1+(N-1)(2)) and this simplifies to O(N) since it is the largest
factor.

Example

Suppose we have a function that sets all the values of a 2D NxN
array to 0.

void zeroArrays(int[][] grid) {

//O(n) to loop through rows.

for (int i = 0; i < grid.length; i++) {

//O(n) loop through columns.

for (int j = 0; j < grid[i].length; j++) {

//O(1) to set element in 2D array.

grid[i][j] = 0;

}

}

}

There are NxN cells we need to set to 0, so we need O(n2) op-
erations. We can also think of it as another way. There are two
nested loops and each loop is O(n) so we multiply them and O(n)
x O(n) = O(n2). Generally, when we have nested loops, we mul-
tiply their complexities. Since we do not use any extra memory
in this function, the space complexity is O(1).

Example

Suppose we have another function that prints out the binary num-
ber backwards for each number from 1 to N. For example, the
binary number backwards for 25 is 10011.

CHAPTER 3. FUNDAMENTALS 23

void binaryNumbers(int n) {

// O(1) memory to store number.

int bin;

// O(n) loop from 1 to n.

for(int x = 1; x < n; x++) {

bin = x;

// O(log n) to print binary of n.

while(bin > 0) {

// O(1) runtime to print one binary digit.

System.out.print(bin % 2);

// O(1) runtime to perform integer division.

bin = bin / 2;

}

// O(1) to print new line.

System.out.println();

}

}

For each number x, it will take O(ln2 x) to convert the number
to binary because we dividing by 2. Since O(ln2 x) = O((ln
x)/ (ln 2)), and the denominator is a constant, we can rewrite
this as O(ln x). We can also rewrite this as O(log x) which most
people use when referring to logarithmic complexities. We do this
operation N times so the total runtime complexity is: O(n log n).
We need O(1) additional memory to store the variable bin and
x.

Example

Suppose we have a function that takes in an array that contains N
integers from 1 to M and prints out one of the modes (number with
most occurrences). We can do this in two different ways.

Our first approach is to loop through the array and count the
number of occurrences that number appears in the rest of ar-
ray.

CHAPTER 3. FUNDAMENTALS 24

public int mode1(int[] arr, int m) {

int n = arr.length;

int maxMode = 0;

int maxOccurences = 0;

// O(n) to loop through each number in array.

for (int i = 0; i < n; i++) {

int occurances = 0;

// O(n) to count number of occurnaces of that number

in array.

for (int j = 0; j < n; j++) {

if (arr[j] == arr[i]) {

occurances++;

}

}

// O(1) to update mode number of occurrences is

greater.

if (occurances > maxOccurences) {

maxOccurences = occurances;

maxMode = arr[i];

}

}

return maxMode;

}

We first have to loop through each number in the array which
takes O(n). Inside that loop, we have another array that counts
the number of occurrences which is O(n) again. Thus the total
runtime of the method is O(n2). We store only the max mode
and the number of occurrences for the max mode so the memory
complexity is O(1).

In our second approach, we will keep an array that stores the
number of occurrences of all the numbers from 1 to M. We will
go through the array and increment the occurrences of a num-
ber when we see it. Then we will find the number that has the
maximum number of occurrences.

CHAPTER 3. FUNDAMENTALS 25

public int mode2(int[] arr, int m) {

int n = arr.length;

// O(m) memory to store occurrences of each number. Let

occurrences[i] be

// number of times i appears in arr.

int[] occurrences = new int[m+1];

// O(m) runtime to set number of occurrences to 0 for

each number.

for (int i = 0; i <= m; i++) {

occurrences[i] = 0;

}

// O(n) runtime to loop through array and increment

number of occurrences.

for (int j = 0; j < n; j++) {

occurrences[arr[j]]++;

}

int mode = 0;

// O(m) runtime to loop through occurrences.

for (int i = 0; i <= m; i++) {

// O(1) runtime to compare update mode if occurrences

of current number is bigger.

if (occurrences[i] > occurrences[mode]) {

mode = i;

}

}

return mode;

}

We first initialize the array of occurrences to 0 which takes O(m).
We then loop through the array of numbers which takes O(n).
Finally, we loop through the array of occurrences to find the mode
which takes O(m). Thus the final runtime is O(n + m). We need
to store the mode which takes O(1) and the array of occurrences
which takes O(m). Thus the memory footprint is O(m).

Note that although the two approaches do the same thing, they
have different complexities for runtime and space. If m was large
and the cost of storing m integers was too expensive, then we

CHAPTER 3. FUNDAMENTALS 26

would use the first approach at the cost of having O(n2) quadratic
runtime. However, if m was small and we wanted a fast solution,
then we would use the second approach at the cost of storing
extra O(m) integers. Problems can have solutions that optimize
for speed and other solutions that optimize for space. Sometimes
space can be more expensive than speed and vice versa.

3.1.4 Exercises

1. Determine the runtime and memory complexities of finding
the average of an integer array.

2. Determine the runtime and memory complexities of adding
two NxN matrices together.

3. Determine the runtime complexity of guessing a N digit nu-
meric password.

4. Determine the runtime complexity of summing the digits of
a number.

5. Determine the memory complexity of counting the occur-
rences of letters in a book.

6. Determine the memory complexity of counting the occur-
rences of words in a book.

Part II

Recursion

27

Chapter 4

Recursion

4.1 Recursion

Next: Advanced Recursion

Recursion is process that repeats itself in a similar way. Any-
thing that has its definition nested inside itself is considered to
be recursive. For example, GNU stands for GNU’s Not Unix!.
Expanding this acronym gives us ((GNU’s Not Unix) Not Unix!).
As you can see this will go on forever and GNU’s definition is
nested inside itself so it is recursive. The Fibonacci sequence is
also recursive: F(n) = F(n-1)+F(n-2). Inside the function F, we
see two more F’s!

In computer science, we want to avoid infinite looping since we
want our programs to finish at some point. This means we have
to find a stopping point where the function will stop calling itself.
A base case is the condition where the last step is reached. All
cases should eventually reduce to a base case. For the Fibonacci
sequence, the base case is F(0) = 1 and F(1) = 1, and we can
see that for all N>1, the Fibonacci sequence will reach the base

28

CHAPTER 4. RECURSION 29

case.

So for something to be recursive in computer science, it needs:

• a recursive definition (contained in itself) and

• a base case that all valid inputs will eventually reach

Template for recursion:

fun(x) {

if baseCase(x) {

return base

}

else {

return fun(reduce(x))

}

}

In this generic recursive function, fun is the recursive function
with a single parameter x. The function baseCase(x) checks if
x is the base case and if it is, fun(x) will return. The function
reduce(x) reduces x to a value closer to the base case. If x is not
the base case then we recursively call fun on a reduced version of
x. This is the basis of most recursive functions.

4.1.1 Factorial

Let’s look at a simple recursive function: factorial.

1! = 1

n! = 1 · 2 · 3 n.

Or we could write it as n! = (n-1)! · n. We now see that in this
form, the factorial function is defined within itself which makes
it recursive. Our base case is 1! = 1.

Example:

CHAPTER 4. RECURSION 30

4!

= 4 · 3!

= 4 · 3 · 2!

= 4 · 3 · 2 · 1!

= 4 · 3 · 2 · 1

= 24

Formalization

Let f(n) be the nth factorial number where n is a positive

integer.

Base case:

f(1) = 1

Recurrence:

f(n) = f(n-1) * n

Example:

f(4)

= 4 * f(3)

= 4 * 3 * f(2)

= 4 * 3 * 2 * f(1) [Base Case]

= 4 * 3 * 2 * 1

= 24

Implementation

int factorial(int n){

if (n == 1) {

return 1;

}

return n * factorial(n - 1);

CHAPTER 4. RECURSION 31

}

4.1.2 Sum of digits of a string

We can use recursion in many places, and we can apply it to simple
problems that you probably have not thought about. Summing
the digits of a string can be done using a simple loop, but we can
also use recursion to do it.

Let’s say we have the string ’23528’. The sum is equal to the
first digit plus the sum of the rest of the digits: 2 + ’3528’. The
sum of the rest of the digits is equal to sum of the second digit
plus the rest of those digits. As we can see, each time we are
performing the same operation on smaller parameters and this is
our recurrence relation. We can keep doing this until we have no
more digits and that is our base case.

• sum(’23528’)

• 2 + sum(’3528’)

• 2 + 3 + sum(’528’)

• 2 + 3 + 5 + sum(’28’)

• 2 + 3+ 5 + 2 + sum(’8’)

• 2 + 3+ 5 + 2 + 8 + sum(”)

• 2 + 3 + 5 + 2 + 8 + 0

• 20

Formalization

Let sum(string) be the sum of digits in a string.

Let n be the length of the string.

CHAPTER 4. RECURSION 32

For simplicity, let string[x..y] be the substring of the

string from x inclusive to y exclusive.

Example:

string = ’abcd’

string[0] = ’a’

string[1..4] = ’bcd’

Base case:

sum(’’) = 0

Recurrence:

sum(string) = int(string[0]) + sum(string[1..n])

Example:

sum("23528")

= 2 + sum("3528")

= 2 + (3 + (sum("528"))

= 2 + (3 + (5 + sum ("28")))

= 2 + (3 + (5 + (2 + sum("8")))))

= 2 + (3 + (5 + (2 + (8 + sum(""))))))

= 2 + (3 + (5 + (2 + (8 + 0))))

= 20

Implementation

int sum(String str) {

int n = str.length();

// Base case when string is empty.

if (n == 0) {

return 0;

}

// Case when string is not empty.

else {

// Convert ASCII to number.

int charToNum = (str.charAt(0) - ’0’);

return charToNum + sum(str.substring(1, n));

}

}

CHAPTER 4. RECURSION 33

// Example: should return 20.

sum(’23528’);

4.1.3 Count

Let’s say we have an string of N characters and we want to find
the number of times the letter ’c’ appears. This time we will need
to add some logic to the solution.

If the first letter of the string is a ’c’, then we can add 1 to the
count. Otherwise, we don’t add anything. We can do the exact
same thing for the rest of the string. If the second letter of the
string is a ’c’, we add 1, otherwise we don’t add anything etc. As
we can see, we are repeating the process on smaller parameters
and we have our recurrence relation. We keep reducing this way
until we get an empty string and this is our base case.

For example, we have the string ’cacaec’. Since the first letter is
a ’c’, we add 1 to the count. Then we do the same for the rest of
the string ’acaec’, the first letter is not a ’c’ so we don’t add to
the count.

• ’cacaec’

• 1 + ’acaec’

• 1 + 0 + ’caec’

• 1 + 0 + 1 + ’aec’

• 1 + 0 + 1 + 0 + ’ec’

• 1 + 0 + 1 + 0 + 0 + ’c’

• 1 + 0 + 1 + 0 + 0 + 1 + ”

• 1 + 0 + 1 + 0 + 0 + 1 + 0

• 3

CHAPTER 4. RECURSION 34

Formalization

Let count(string) be the number of ’c’s in the string.

For simplicity, let string[x..y] be the substring of the

string from x inclusive to y exclusive.

Example:

string = ’abcd’

string[0] = ’a’

string[1..4] = ’bcd’

Base case:

count(empty) = 0

Recurrence:

count(string) = 1 + count(string[1..n]) if string[0]==’c’

count(string) = count(string[1..n]) otherwise

Example:

count("cacaec")

= 1 + count("acaec")

= 1 + (0 + count("caec"))

= 1 + (0 + (1 + count("aec")))

= 1 + (0 + (1 + (0 + count("ec"))))

= 1 + (0 + (1 + (0 + (0 + count("c")))))

= 1 + (0 + (1 + (0 + (0 + (1 + count("")))))

= 1 + (0 + (1 + (0 + (0 + (1 + 0)))))

= 3

Implementation

int count(String str) {

int n = str.length();

// Base case for empty string.

if (n == 0) {

return 0;

}

CHAPTER 4. RECURSION 35

// Case if first character is a ’c’.

if (str.charAt(0) == ’c’) {

return count(str.substring(1, n)) + 1;

}

// Case if first character is not a ’c’.

else {

return count(str.substring(1, n));

}

}

//Example: should return 3.

count(’cacaec’);

4.1.4 Calculate Exponential

Let’s say we wanted to find the last four digits xn. Note that
2674 mod 10000 = (2673 mod 10000) * 267 mod 10000. This is
important because it means we can take the last 4 digits in each
step instead of having to compute the giant exponent and then
taking the last 4 digits. By definition of exponents, xa * xa =
x2a. Using this, we see that if n is divisible by 2, then xn = xn/2

* xn/2.

For example, 54 = 52 * 52.

But let’s take a look at xn/2. If n is even, we can do the exact
same thing! xn/2 = xn/4 * xn/4. We are solving a reduced version
of the same problem so we have a recurrence relation. The base
case is simple: x1 = x.

But what if n is odd and not 1? Then we have xn = xhn-1)/2‘*
xhn-1)/2‘* x. Thus our recursive function has 3 different cases:
the base case, even case and odd case.

Formalization

CHAPTER 4. RECURSION 36

Let exp(b,n) be b^n.

Base case:

exp(b,1) = b (Since b^1 = b)

Recurrence:

exp(b,n) = exp(b, n / 2) ^ 2 % 10000 if n is even

exp(b,n) = exp(b, (n - 1) / 2) ^ 2) * b % 10000 otherwise

Example: (for simplicity, leave out the modulus)

exp(3,10)

= exp(3, 5) ^ 2

= (exp(3, 2) ^ 2)) * 3) ^ 2

= (((exp(3, 1) ^ 2) * 3) ^ 2) [Base case]

= (((3 ^ 2) ^ 2) * 3) ^ 2)

= ((9 ^ 2) * 3) ^ 2)

= (81 * 3) ^ 2

= (243) ^ 2

= 59049

Implementation

int exponent(int b, int n){

//Base case when n is 1.

if (n == 1) {

return b;

}

// Case when n is even.

if(n % 2 == 0) {

int x = exponent(b, n / 2);

return (x * x) % 10000;

}

// Case when n is odd.

else {

int x = exponent(b, (n - 1) / 2);

return (x * x * b) % 10000;

}

}

CHAPTER 4. RECURSION 37

4.1.5 Exercises

1. Given an array of N integers, write a recursive function to
get the sum.

2. Given a string S, write a recursive function to determine if
it is a palindrome.

3. Given a number N, write a recursive function to output the
number in binary.

4. Given a string S, write a recursive function to return a re-
versed string.

4.2 Advanced Recursion

Prerequisites: Recursion

Next: Intermediate Recursion, Backtracking, Dynamic Program-
ming

Recursion can sometimes be very difficult to wrap your head
around because when you try to go deeper, it only keeps getting
deeper. It is sometimes hard to figure out the recurrence relation,
but once you do, the problem becomes simple to solve.

4.2.1 Number of paths

Suppose we have a grid of N rows and M columns. How many
ways are there to get from the bottom left cell to the top right
cell only going upwards or rightwards?

CHAPTER 4. RECURSION 38

We see that the only way to reach a cell, is to come from the left
or from the bottom. So the number of ways to reach a cell is the
number of ways to reach the cell to the left plus the number of
ways to reach the cell on the bottom.

In other words, the number of ways to get to cell (x, y) is the
sum of the ways to get to the cell (x-1, y) and the cell (x, y-1).
However, the number of ways to reach the cell (x-1, y) is the sum
of the number of ways to the cell (x-2, y) and (x-1, y-1). As we
can see, we are solving a reduced version of the same problem!
Thus we have a recurrence relation.

The base case is any cell on the left border or bottom border.
There is only one way to reach the cell by either going only up or
only going right.

Formalization

Let path(x,y) be the number of ways to get to the grid at

x and y

Base case:

paths(1,y) = 1

paths(x,1) = 1

CHAPTER 4. RECURSION 39

Recurrence:

paths(x,y) = paths(x-1,y) + paths(x,y-1)

Example:

paths(3,5)

= paths(2,5) + paths(3,4)

= paths(1,5) + paths(2,4) + paths(2,4) + paths(3,3)

= 1 + paths(1,4) + paths(2,3) + paths(1,4) + paths(2,3) +

paths(2,3) + paths(3,2)

= 1 + 1 + paths(1,3) + paths(2,2) + 1 + paths(1,3) +

paths(2,2) + paths(1,3) + paths(2,2) + paths(2,2) +

paths(3,1)

= 1 + 1 + 1 + paths(1,2) + paths(2,1) + 1 + 1 + path(1,2)

+ paths(2,1) + 1 + paths(1,2) + paths(2,1) +

= 15

Example of what the grid should look like

Implementation

int paths(int n,int m){

if (n == 1 || m == 1) {

return 1;

}

return paths(n - 1, m) + paths(n, m - 1);

}

CHAPTER 4. RECURSION 40

4.2.2 Towers of Hanoi

Suppose we have a game where there are three poles and N discs
where each disc is heavier than the next disc. In the initial con-
figuration, the discs are stacked upon another on the first pole
where the lighter discs are above the heavier discs. The end goal
is to move all the discs to the last pole with the following condi-
tions:

• Only one disc can be moved from one pole to another at a
time.

• The discs have to be stacked such that all the lighter discs
are on top of the heavier ones.

Let’s try to make this problem simpler. To move N discs from the
first pole the the last pole we need to move N-1 discs to the middle
pole, then move the Nth disc to the last pole, and then move all
N-1 discs from the middle pole back on to the last pole.

Let the starting pole be the first pole, the helper pole be the
middle pole and the destination pole the third pole.

To move N discs from the starting pole to the destination pole:

CHAPTER 4. RECURSION 41

Step 1:

We need to move N-1 discs from the starting pole to the helper
pole.

Step 2:

We need to move the Nth disc from the starting pole to the des-
tination pole.

Step 3:

CHAPTER 4. RECURSION 42

We need to move N-1 discs from the helper pole to the destination
pole.

We can see that Step 2 is easy, all we have to do is move one disc.
But for Step 1 and Step 3, we have to move N-1 discs. How can
we move N-1 discs to the middle pole?

We see that we can use the same reasoning: we need to move N-2
discs to the third pole. Then we need to move the N-1 disc to the
second pole and then move N-2 discs from the third pole to the
second pole. Note that the Nth disc does not matter at all in this
case since we can move any disc on top of it and we can pretend
as if it doesn’t exist.

In this case, the starting pole is the first pole, the helper pole is
the third pole and the destination pole is the middle pole.

CHAPTER 4. RECURSION 43

To move N-1 discs from starting pole to destination pole:

Step 1:

We need to move N-2 discs from starting pole to helper pole

Step 2:

We move the N-1th disc from the starting pole to the destination
pole

CHAPTER 4. RECURSION 44

Step 3:

We move N-2 discs from the helper pole to the destination pole.

As we can see, the steps to move N discs are exactly the same as
to move N-1 discs! The only difference is that the actual poles are
different but the steps are the same relative to their roles (starting,
helper and destination). We are solving a reduced version of the
same problem, thus we have a recurrence.

CHAPTER 4. RECURSION 45

In Step 1, when we move N-1 discs from start to helper, the new
helper is the old destination and the new destination is the old
helper.

In Step 3, when we move N-1 discs from the helper to the desti-
nation, the new helper is the start pole, and the new start pole is
the helper

Formalization

Let hanoi(N, start, helper, dest) print the steps to move

N discs from the start to dest

Base case:

hanoi(1, start, helper, dest):

print "Move from (start) to (dest)"

Recurrence:

hanoi(N, start, helper, dest):

hanoi(N - 1, start, dest, helper)

print "Move from start to dest"

hanoi(N - 1, helper, start, dest)

Example:

Let A, B, C be pole 1, 2, 3

hanoi(4,A,B,C)

=

hanoi(3,A,C,B)

Move from A to C

hanoi(3,B,A,C)

=

hanoi(2,A,B,C)

CHAPTER 4. RECURSION 46

Move from A to B

hanoi(2,C,A,B)

Move from A to C

hanoi(2,B,A,C)

Move from B to C

hanoi(2,A,B,C)

=

hanoi(1,A,C,B)

Move from A to C

hanoi(1,B,A,C)

Move from A to B

hanoi(1,C,B,A)

Move from C to B

hanoi(1,A,C,B)

Move from A to C

hanoi(1,B,C,A)

Move from B to C

hanoi(1,A,B,C)

Move from B to C

hanoi(1,A,C,B)

Move from A to C

hanoi(1,B,A,C)

=

Move from A to B

Move from A to C

Move from B to C

Move from A to B

Move from C to A

Move from C to B

Move from A to B

Move from A to C

Move from B to A

Move from B to C

Move from A to C

Move from B to C

CHAPTER 4. RECURSION 47

Move from A to B

Move from A to C

Move from B to C

Implementation

void hanoi(int N, int start, int helper, int destination) {

// Base case to move one disk.

if (N == 1) {

System.out.println("Move " + start + " to " +

destination);

}

else {

// Move N-1 discs from start to helper.

hanoi(N - 1, start, destination, helper);

// Move 1 disc from start to end.

hanoi(1, start, helper, destination);

// Move N-1 discs from helper to end.

hanoi(N - 1, helper, start, destination);

}

}

hanoi(4, 1, 2, 3);

4.2.3 Permutations

A permutation is an arrangement of the original set of elements.

For example, here we have a few permutations of A,B,C,D,E,F:

• D,E,F,C,B,A

• F,C,D,B,A,E

• B,D,A,E,F,C

• A,B,C,D,E,F

CHAPTER 4. RECURSION 48

Given a string S of length N, how can we generate all permuta-
tions?

Let’s assume that we have a list of permutations for the substring
of S of N-1 characters. To get the permutations for a string of
length N, we need to insert the Nth character in between all the
positions of each permutation of N-1 characters. For example,
here is how the permutation of A,B,C,D is generated.

We can manually find the permutations of A,B,C.

• A,B,C

• A,C,B

• B,A,C

• B,C,A

• C,A,B

• C,B,A

If we insert the letter D between each letter for every permutation
in N-1 letters, we get:

• D,A,B,C

• A,D,B,C

• A,B,D,C

• A,B,C,D

• D,A,C,B

• A,D,C,B

• A,C,D,B

• A,C,B,D etc

CHAPTER 4. RECURSION 49

And we can guarantee that every new permutation will be unique.
(Try to prove that to yourself).

But let’s look at how we can get the permutations of A,B,C.
We can also get all the permutations of the string by taking the
permutations of A,B and inserting C in all the positions for all
substrings.

Substrings of A,B

• A, B

• B, A

Insert C for all positions for all permutations

• C,A,B

• A,C,B

• A,B,C

• C,B,A

• B,C,A

• C,B,A

For simplicity, S[i..j] will mean the substring from i inclusive to
j exclusive. For example, if S = ”abcd”, S[0] = ’a’ and S[1..4] =
”bcd”.

We see that we are solving the same reduced problem, thus we
have a recurrence relation. To get the permutations of a string
N, we take the string[0..N-1] and we insert the Nth character at
every position for each permutation of the N-1 substring. The
base case is an empty string. Permutation of an empty string is
an empty list.

Let permute(S) be a list of permutations for the string S

CHAPTER 4. RECURSION 50

Let insertAll(ch, stringArr) be a function that inserts

the character ch in every position in every string

stringArr.

Example:

insertAll(’c’, [’ab’,’ba’]) = [’cab’, ’acb’, ’bac’, ’cba’,

’bca’, ’bac’]

Base case:

permute("") = [""]

Recurrence:

Let N be the length of string S

permute(S) = insertAll(S[0], permute(S[1..N]))

Example:

permute(’ABC’)

= insertAll(’A’, permute(’BC’)

= insertAll(’A’, insertAll(’B’, permute(’C’))

= insertAll(’A’, insertAll(’B’, insertAll(’C’,

permute(’’))))

= insertAll(’A’, insertAll(’B’, insertAll(’C’, [’’])))

= insertAll(’A’, insertAll(’B’, [’C’]))

= insertAll(’A’, [’BC’, ’CB’])

= [’ABC’, ’BAC’, ’BCA’, ’ACB’, ’CAB’, ’CBA’]

Implementation

Vector<String> insertAll(char ch, Vector<String> strArr) {

Vector<String> vec = new Vector<String>();

for (int i = 0; i < strArr.size(); i++) {

String str = strArr.get(i);

for (int j = 0; j <= str.length(); j++) {

vec.add(str.substring(0, j) + ch + str.substring(j,

str.length()));

}

}

CHAPTER 4. RECURSION 51

return vec;

}

Vector<String> permutation(String s) {

int n = s.length();

// Base case of one empty string.

if (n == 1) {

Vector<String> vec = new Vector<String>();

vec.add(s.substring(0, 1));

return vec;

}

// Recursive relation.

return insertAll(s.charAt(0),

permutation(s.substring(1)));

}

// Example usage:

permutation("abc");

4.2.4 Exercises

1. Given a string S, write a recursive function to generate all
its non-empty substrings.

2. Write a solution for hanoi towers but with the restriction
that discs can only be moved from adjacent poles. (You can
move a disc from A to B but not A to C because they are
not adjacent).

3. Write the formalization and code for a recursive insertAll(ch,
stringArr).

Part III

Data Structures

52

53

Introduction

Data structures are different ways of storing data such that they
optimize certain data operations such as retrieval and insertion.
Although many of these data structures are already built into
various languages, it is important to understand how they work.
By understanding the implementations, we can have a sense of
which data structure to use for different scenarios.

An abstract data type is a conceptual model for representing data.
An abstract data type tells what it should do as opposed to how
it should work. It will tell us what operations it should have but
should not tell us how to implement them.

For example, a bottle should be able to hold water and allow us
to drink from it. This tells us what it should do but we don’t need
to know how it works or how it is made. A plastic water bottle
is an implementation of a bottle. It holds water in its interior
and allows us to drink by unscrewing the cap and letting us pour
water down our throat. A thermos is also an implementation of
the bottle, it has a lid that can be popped open. and water can
come from it. A thermos and plastic water bottle are different
implementations as they are made differently and used differently,
but they fundamentally do what a bottle is supposed to do: store
liquid and provide a way to drink. A bottle in the abstract does
not actually exist, but types of bottles do.

54

Some implementations of abstract data types are better than oth-
ers for different purposes. For example, plastic water bottles are
very cheap, whereas a thermos is more expensive. However, a
thermos can hold hot water and keep it warm for a longer period
of time. When selecting a data structure, we should pick one
based on the efficiencies of data operations that we will do most
often.

Chapter 5

Stack

5.1 Stack

A stack is an abstract data type with the property that it can
remove and insert elements following a FILO (First In Last Out)
structure. The first element to be inserted must be the last el-
ement to be removed and the last element to be inserted must
be the first element to be removed. Sometimes, removal is called
”pop” and insertion is called ”push”.

Imagine a stack of plates at a buffet, the plates are taken from
the top and are also replaced from the top. The first plate to go
in will be the last plate to come out. The last plate to go in will
be the first to come out. This structure is what a stack is.

Example of push:

55

CHAPTER 5. STACK 56

Example of pop:

Stacks are used to keep track of function calls in memory. When-
ever a function is called, it is placed on the memory stack with
its variables, and when it is returning a value, it is popped off the
stack.

A stack is usually implemented as a vector.

Implementation Pop Push

Vector O(1) O(1)

CHAPTER 5. STACK 57

5.2 Vector

Prerequisites: Arrays, Stack

A vector is a stack that is implemented as an array. It is very
similar to an array, but it is more flexible in terms of size. El-
ements are added and removed only from the end of the array.
When more elements are added to the vector and the vector is
at full capacity, the vector resizes itself and reallocates for 2*N
space. When using an vector we can keep adding elements and
let the data structure handle all the memory allocation.

Operation Get Push Pop Insert

Time Complexity O(1) O(1) O(1) O(n)

5.2.1 Class

There is a builtin Vector class already, but we will go through
the implementation of a simple integer vector class to understand
how the data structure works.

In our vector class, we need to store the element and the size of
the current vector.

public class Vec {

private int[] arr;

int size = 0;

public Vec(int size) {

arr = new int[size];

}

}

CHAPTER 5. STACK 58

5.2.2 Resize

Resize will be used to resize the array to have twice the capacity.
We create a new array of two times the size of the old one and
copy the old elements over.

public void resize() {

int[] newArr = new int[2 * arr.length];

// Copy to new array.

for (int i = 0; i < size; i++) {

newArr[i] = arr[i];

}

arr = newArr;

}

5.2.3 Add Element

Add element will add elements to the end of the vector. If the
array is full, the vector will resize itself.

CHAPTER 5. STACK 59

public void add(int x) {

if (size >= arr.length) {

resize();

}

arr[size] = x;

size++;

}

5.2.4 Pop

Removes the element at the end of the vector. We decrease the
size of the vector and return the last element.

public int pop() {

if (size == 0) {

throw new NoSuchElementException();

}

int ret = arr[size];

size--;

return ret;

}

CHAPTER 5. STACK 60

5.2.5 Remove

Removes element at index and shifts all elements to the right of
it to the left by one.

public int remove(int idx) {

if (idx < 0 || idx >= size) {

throw new ArrayIndexOutOfBoundsException();

}

int ret = arr[idx];

while (idx + 1 < size) {

arr[idx] = arr[idx + 1];

idx++;

}

size--;

return ret;

}

5.2.6 Get Element

Returns the element at the specified index. It will throw an ex-
ception if the index is out of bounds.

CHAPTER 5. STACK 61

public int get(int idx) {

if (idx < 0 || idx >= size) {

throw new ArrayIndexOutOfBoundsException();

}

return arr[idx];

}

5.2.7 Insert Element

Insert the new number x at the index.

We need to make space for the new element so when we insert
the element, we have to shift all the elements to the right of the
index by 1.

CHAPTER 5. STACK 62

public void insert(int idx, int x) {

if (idx < 0 || idx > size) {

throw new ArrayIndexOutOfBoundsException();

}

size++;

if (size >= arr.length) {

resize();

}

int idx2 = size;

// Shift elements to the right.

while (idx2 > idx) {

arr[idx2] = arr[idx2 - 1];

idx2--;

}

// Insert element.

arr[idx] = x;

}

5.2.8 Exercises

1. Implement add(Vector v) to the Vector class, which adds
all the elements of v to the current vector.

2. Implement remove(Integer i) that finds the element i and
removes it from the current vector.

CHAPTER 5. STACK 63

5.3 Exercises

1. Given a string of brackets of either () or [], determine if the
bracket syntax is legal (every opening bracket has a closing
bracket from left to right).

Legal syntax:

• ([() []])

• () () [] () ()

Illegal syntax:

• (()]

• () [(])

Chapter 6

Queue

6.1 Queue

A queue is an abstract data type with two functions, pop and
push. Removal from the front is called ”pop” or ”dequeue”. In-
sertion from the back is called ”push” or ”enqueue”. A queue
follows a First In First Out (FIFO) structure meaning the first
element pushed should be the first element popped and the last
element pushed should be the last element popped.

Imagine you are standing in line for a restaurant. Whoever is
first in line will be served first and whoever is last in line will be
served last. People can be served while more people join the line
and the line may get very long because it takes a while to serve
one person while more people join the queue. This is called a
queue.

Queues are often used for buffer systems, such as a text message
service. The messages that arrive at the server first are relayed
first and the messages that arrive later are relayed later. If there
are too many text messages in the system such that the rate

64

CHAPTER 6. QUEUE 65

texts are received overwhelm the number of texts that are sent
the buffer may overflow and messages will get dropped. Most of
the time this won’t happen because the systems are designed to
handle large loads, but if there were an emergency that caused
everyone to start texting many texts could be dropped.

Example of push:

Example of pop:

We can implement a queue most efficiently using a linked list
because it uses efficient memory allocation.

Implementation Pop Push

Linked List O(1) O(1)

CHAPTER 6. QUEUE 66

6.2 Linked List

Prerequisites: Queue

A linked list is an implementation of a queue that uses a chain of
pointers. Instead of storing all the data in a fixed set of memory,
we can store each element by itself but have a pointer from each
element to the next element. A pointer is something that holds
the memory location of another object.

Imagine you were on a scavenger hunt with lots of treasure chests.
You start with a clue to the first chest. Each chest contains a lot
of gold (data) but it also contains a clue to the next treasure chest.
To get to the fifth chest, you need to visit the first, second, third
and fourth chest. This is essentially how a linked list works.

A linked list is similar to an array but it is different such that it
is not stored in one block of data. Each element can be stored in
a random place in memory but each element contains a pointer
to the next element thus forming a chain of pointers. Think of
a pointer as a clue to the next chest. Since the elements aren’t
in a block, accessing an element must be done by traversing the
entire linked list by following each pointer to the next. However,
this also allows insertion and deletion to be done more quickly.
In a linked list the links only go forward and you cannot move
backward. However, a doubly linked list is a linked list that has
pointers going backwards as well as forwards.

CHAPTER 6. QUEUE 67

Operation Get Push Delete Insert

Time Complexity O(n) O(1) O(1) O(1)

6.2.1 Link Class

In Java, there already exists a LinkedList class but we will imple-
ment our own.

We need a Link class for each ”link” in the Linked List. In each
Link we only need the value and location of the previous and next
node.

class Link {

int value;

Link next;

public Link(int value) {

this.value = value;

this.next = null;

}

}

6.2.2 LinkedList Class

Create the linked list by initializing the starting node and ending
node as null and setting the size to empty.

public class LinkedList {

public Link head;

CHAPTER 6. QUEUE 68

public Link end;

public int size;

public LinkedList() {

head = null;

end = null;

size = 0;

}

}

6.2.3 Push

Create a new node with the value given and add it to the end.
We have to set the current head previous node to the new node
and the new next next to the last node.

For example, if we want to insert E into the following linked
list:

First, we set the next pointer of the last element to the next
element.

Then we set the new end of the linked list.

CHAPTER 6. QUEUE 69

public void push(int value) {

Link newLink = new Link(value);

if (size == 0) {

head = end = newLink;

}

else {

end.next = newLink;

end = newLink;

}

size++;

}

6.2.4 Pop

Pops off the head of the linked list and throws an exception if the
linked list is empty.

For example, if we want to pop the first element of the following
linked list:

We set the head of the linked list to the second element.

CHAPTER 6. QUEUE 70

public int pop() {

if (head == null) {

throw new NoSuchElementException();

}

int ret = head.value;

head = head.next;

size--;

if (size == 0) {

end = null;

}

return ret;

}

6.2.5 Get

Get retrieves the value at the specified index. We have to loop
through the entire list to get to the index we want.

For example, if we want to get the element C in the following
linked list:

We first start at the head element and iterate through each node.

CHAPTER 6. QUEUE 71

We keep following the next pointers until we reach the node we
want or the end of the linked list.

Since our current pointer points to C, we stop.

public int get(int index) {

int i = 0;

Link curNode = head;

while (curNode != null) {

if (index == i) {

return curNode.value;

}

curNode = curNode.next;

i++;

}

throw new NoSuchElementException();

}

CHAPTER 6. QUEUE 72

6.2.6 Delete

To delete the current node we set the previous node next link to
the link that is next.

For example, if we wanted to delete B from the following linked
list:

We would find B and set the previous node’s next to B’s next
which is C.

public void deleteNext(Link node) {

if (node.next == end) {

end = node;

}

node.next = node.next.next;

size--;

}

6.2.7 Exercises

1. Implement a doubly linked list.

CHAPTER 6. QUEUE 73

2. A game is played by always eliminating the kth player from
the last elimination and played until one player is left. Given
N players where each is assigned to a number, find the num-
ber of the last remaining player.

For example, you have 5 players (1,2,3,4,5) and the 3rd
player is eliminated.

• 1, 2, 3, 4, 5

• 1, 2, 4, 5 (1, 2, 3 is eliminated)

• 2, 4, 5 (4, 5, 1 is eliminated)

• 2, 4 (2, 4, 5 is eliminated)

• 2 (2, 4, 2 is eliminated)

• Player 2 is the last one standing.

3. Given two linked lists which may share tails, determine the
point at which they converge. For example, if our first linked
list is [1,2,4,5] and our second linked list is [0,3,4,5] and each
number is a node, then the two linked lists converge at 4.

4. Given a node in a doubly linked list, write a function that
removes the node from the list.

CHAPTER 6. QUEUE 74

6.3 Exercises

1. Given a list of letters representing instructions where the
first instruction is executed, output what the final list should
look like after N instructions are executed.

First instruction:

• A. Add B to the end of the list of instructions

• B. Do nothing

• C. Add two A’s to the front of the list of instructions

Example:

• ABC

• BCB

• CB

• AAB

• ABB

• BBB

• BB

• B

Chapter 7

Sets

7.1 Sets

Sets are abstract data structures which are able to store and keep
track of unique values.

Imagine you have a grocery list that you use to keep tracking
of things you need to buy. You want to make sure there are no
duplicate items in the list, you can add items to the list and that
you can remove items from your list. This structure is similar to
what a set does.

Sets have three operations: insertion, deletion and a membership
test. Insertion places an element into the set, deletion removes an
element from the set and a membership test is checking whether
an element exists within the set.

Type Membership Insertion Deletion

Hash Set O(1) O(1) O(1)
Tree Set O(log n) O(log n) O(log n)

75

CHAPTER 7. SETS 76

7.2 Hash Set

Prerequisites: Sets, Linked List

Hash sets are sets that use hashes to store elements. A hashing
algorithm is an algorithm that takes an element and converts it to
a chunk of a fixed size called a hash. For example, let our hashing
algorithm be (x mod 10). So the hashes of 232, 217 and 19 are
2,7, and 9 respectively.

For every element in a hash set, the hash is computed and ele-
ments with the same hash are grouped together. This group of
similar hashes is called a bucket and they are usually stored as
linked lists.

If we want to check if an element already exists within the set,
we first compute the hash of the element and then search through
the bucket associated with the hash to see if the element is con-
tained.

CHAPTER 7. SETS 77

Operation Membership Insertion Deletion

Time Complexity O(1) O(1) O(1)

7.2.1 Class

Inside our implementation of a hash set, we will store the buckets
(using an array of linked lists), the number of buckets, and the
number of elements in the set.

The collision chance is the threshold for resizing the hash set.
When the ratio of elements in the set to number of buckets is
greater than the threshold, then the chance of collision will be
high enough that it will slow down the operations. The lower this
ratio, the better performing a hash set will be.

public class HashSet {

public LinkedList<Integer>[] buckets;

public int bucketsSize = 10;

public int size = 0;

public static final double COLLISION_CHANCE = 0.3;

CHAPTER 7. SETS 78

public HashSet() {

// Create buckets.

buckets = new LinkedList[10];

for (int i = 0; i < bucketsSize; i++) {

buckets[i] = new LinkedList<Integer>();

}

size = 0;

}

}

If we wanted to check if 7238 was in the hash set, we would get
the hash (7238 mod 10 = 8). So we get the bucket associated with
the hash 8 and we get the list of [538]. When we iterate through
this short list, we see that 7238 is not a member of the set.

Similarly, if we wanted to insert 7238 into the hash set, we would
check if it exists and if it did not, we would add the element to
the bucket. For deletion, we would find 7238 and then remove it
from the bucket if it existed.

Hash sets are very efficient in all three set operations if a good
hashing algorithm is used. When the objects are that being stored
are large then hash sets are effective as a set.

7.2.2 Hash code

The hash code is the result of the hashing algorithm for an ele-
ment. In our hash set implementation, we will use a simple hash:
modulus of the integer by the number of buckets.

CHAPTER 7. SETS 79

For the most part, if the numbers are all random, then the hash
function will perform well. However, if the number of buckets
was 10 and we added the elements 20,30,40,50,60,70, then they
would all end up in the same bucket and performance degenerates
to a linked list. A good hash function can prevent this from
occurring.

public int getHash(int x, int hashSize) {

// Use modulus as hash function.

return x % hashSize;

}

7.2.3 Resize

A hash set must be able to resize. When the ratio of number
of elements to number of buckets, the chance of collision will
increase more and more. So we must able to resize the number of
buckets to support the number of elements to lower the chance of
collision.

To resize efficiently, we can create two times the number of buckets
and set them to empty and then insert all the elements in the old
buckets to the new buckets.

public void resize() {

// Double number of buckets.

int newBucketsSize = bucketsSize * 2;

LinkedList<Integer>[] newBuckets = new

LinkedList[newBucketsSize];

// Create new buckets.

for (int i = 0; i < newBucketsSize; i++) {

newBuckets[i] = new LinkedList<Integer>();

}

// Copy elements over and use new hashes.

CHAPTER 7. SETS 80

for (int i = 0; i < bucketsSize; i++) {

for (Integer y : buckets[i]) {

int hash = getHash(y, newBucketsSize);

newBuckets[hash].push(y);

}

}

// Set new buckets.

buckets = newBuckets;

bucketsSize = newBucketsSize;

}

7.2.4 Insert

To insert an element in a hash set, we get the hash code from our
hashing algorithm and insert the element into the corresponding
bucket.

For example, if we want to insert 88 in the following hash set:

We compute the hash of 88 which is 8, and we insert it to the end

CHAPTER 7. SETS 81

of the bucket with hash 8.

The function will return whether or not the operation was suc-
cessful. If the bucket already contains the element, the operation
will stop because we do not want to add duplicate elements into
the set. If the bucket does not contain the element, we will insert
it into the bucket and the operation is successful.

public boolean insert(int x) {

// Get hash of x.

int hash = getHash(x, bucketsSize);

// Get current bucket from hash.

LinkedList<Integer> curBucket = buckets[hash];

// Stop, if current bucket already has x.

if (curBucket.contains(x)) {

return false;

}

// Otherwise, add x to the bucket.

curBucket.push(x);

CHAPTER 7. SETS 82

// Resize if the collision chance is higher than

threshold.

if ((float) size / bucketsSize > COLLISION_CHANCE) {

resize();

}

size++;

return true;

}

7.2.5 Contains

To check if a hash set contains an element, we get the hash code
from our hashing algorithm and check if the corresponding bucket
contains the element.

For example, if want to check if 123 is in the hash set:

We compute the hash of 123 which is 3 and search the bucket
with hash 3.

We iterate through the bucket until we find the element we want

CHAPTER 7. SETS 83

and return true. Otherwise, if we cannot find the element in the
bucket we return false.

public boolean contains(int x) {

// Get hash of x.

int hash = getHash(x, bucketsSize);

// Get current bucket from hash.

LinkedList<Integer> curBucket = buckets[hash];

// Return if bucket contains x.

return curBucket.contains(x);

}

7.2.6 Remove

To remove an element from a hash set, we get the hash code
from our hashing algorithm and remove the element from the
corresponding bucket.

The function will return whether or not the operation was suc-

CHAPTER 7. SETS 84

cessful. If the bucket contains the element we can remove it from
the linked list and the operation is successful. If the element is not
in the bucket then the operation fails because we cannot remove
something that is not there.

For example, we want to remove 123 from the hash set:

We compute the hash of 123 which is 3 and we search the bucket
with hash 3.

We iterate through each element in the bucket until we find
123.

CHAPTER 7. SETS 85

If we find the element, we delete the element from the bucket.

public boolean remove(int x) {

// Get hash of x.

int hash = getHash(x, bucketsSize);

// Get bucket from hash.

CHAPTER 7. SETS 86

LinkedList<Integer> curBucket = buckets[hash];

// Remove x from bucket and return if operation

successful.

return curBucket.remove((Integer) x);

}

7.2.7 Exercises

1. Devise a hashing algorithm for strings.

2. Calculate the probability of a collision occurring given the
number of buckets and number of elements in the hash set.

3. Prove that the runtime of all the operations are O(1).

7.3 Tree Set

Prerequeisites: Sets, Binary Search Tree

A tree set is a set which stores the values in a binary search tree.
To store elements in a tree set, they must be able to be sorted
by a property. To insert an element, it is added to the binary
tree. To delete an element, it is removed from the binary tree.
To check for membership, we do a binary search for the element
in the binary tree.

The advantage of tree sets is that they are maintained in a sorted
order.

Tree Sets are implemented using binary search trees.

CHAPTER 7. SETS 87

Operation Membership Insertion Deletion

Binary Search Tree O(log n) O(log n) O(log n)

7.4 Binary Search Tree

Prerequisites: Set, Binary Tree

A binary search tree is a binary tree with special properties. For
every node in the tree, the values of all the nodes in left subtree
of a node will always be less than the value of the node and all
the nodes in the right subtree will always be more than the value
of the node. It has a recursive structure meaning every subtree is
also a binary search tree.

Structure:

CHAPTER 7. SETS 88

Example:

Operation Membership Insertion Deletion

Time Complexity O(log n) O(log n) O(log n)

7.4.1 Class

In a binary search tree, everything to the left of a node is smaller
than that node and everything to the right of that node is greater
than that node.

Structure:

Example:

CHAPTER 7. SETS 89

Implementation

A Node is a node in our binary search tree. Each node will contain
a left subtree, a right subtree, the parent of the tree and the
value stored at that node. It is unnecessary to store the parent,
but for this implementation it will be easier to keep track of the
parent.

replaceChild replaces the left or right child node specified with
the replacement node.

public class Node {

int value;

Node left;

Node right;

Node parent;

public Node(int val, Node parent) {

this.value = val;

this.left = null;

this.right = null;

this.parent = parent;

}

// Replaces the child node with the replacement one.

CHAPTER 7. SETS 90

public void replaceChild(Node child, Node replacement) {

// If replacing left child.

if (left == child) {

left = replacement;

}

// If replacing right child.

if (right == child) {

right = replacement;

}

// Set replacement nodes parent.

if (replacement != null) {

replacement.parent = this;

}

}

}

In our class we will store the number of element in the set and
the root of the tree. From the root of the tree we can traverse the
rest of the tree.

public class BinarySearchTree {

int size;

Node root;

public BinarySearchTree(){

size = 0;

root = null;

}

}

7.4.2 Insert

To insert an element in the tree set we search for the element that
we are trying to insert. If it is already there then the operation
fails because sets contain unique elements. Otherwise we will
insert the new element into the set.

CHAPTER 7. SETS 91

Let’s insert 4 into the binary search tree. We first start at the
root at 5.

Since 4 is less than 5, we traverse the left subtree to 2.

Since 4 is greater than 2, we traverse the right subtree to 3.

CHAPTER 7. SETS 92

Since 4 is greater than 3 and there is no right child, than we create
a new node with the value 4 as the right child.

Implementation

public boolean insert(int x) {

// If root is missing.

if (root == null) {

root = new Node(x, null);

size = 1;

return true;

}

Node curTree = root;

while (curTree != null) {

// Return if x already exists in set.

if (x == curTree.value) {

return false;

}

// Traverse left if x is less than current node.

else if (x < curTree.value) {

// If left child is empty, create new node.

if (curTree.left == null) {

curTree.left = new Node(x, curTree);

size++;

return true;

CHAPTER 7. SETS 93

}

// Traverse left child.

curTree = curTree.left;

}

// Traverse right otherwise.

else {

// If right child is empty, create new node.

if (curTree.right == null) {

curTree.right = new Node(x, curTree);

size++;

return true;

}

// Traverse right child.

curTree = curTree.right;

}

}

return false;

}

7.4.3 Contains

To check if the tree set contains an element, we search for it in
the binary tree by starting at the root. If the number is less than
the current, we search the left subtree. If the number is greater
than the current, we search the right subtree.

We want to check if the number 6 is in the binary search tree.

CHAPTER 7. SETS 94

Since 6 is larger than 5, we traverse the right subtree of 5.

Since 6 is less than 8, we traverse the left subtree of 8.

The root of the left subtree is 6, thus we have found the element.
If we were to keep traversing and reach a leaf node that was not
the element, then the element would not exist in the binary search
tree.

CHAPTER 7. SETS 95

Implementation

public boolean contains(int x) {

Node curTree = root;

// Iterate through tree.

while (curTree != null) {

// If found element return true.

if (x == curTree.value) {

return true;

}

// Traverse left tree if x is less than current node.

else if (x < curTree.value) {

curTree = curTree.left;

}

// Traverse right tree if x is greater then current

node.

else {

curTree = curTree.right;

}

}

// Return false if not found.

return false;

}

7.4.4 Remove

Removing an element is a much more complex because we need
to maintain the tree structure of the tree set when removing el-
ements. First, we locate the element that we want to remove. If
the element is not there, then the operation failed and we return
false. If the element is there, then are three cases we need to
consider.

CHAPTER 7. SETS 96

Case 1: Node is a leaf node

If the node we want to remove is the leaf node, we can simply
remove it.

CHAPTER 7. SETS 97

Case 2: Node has one child

If the node we want to remove has a child, we can replace that
node with its’ only child.

CHAPTER 7. SETS 98

Case 3: Node has two children

We need to replace the node with the rightmost of the left subtree
or the leftmost of the right subtree to maintain the order.

CHAPTER 7. SETS 99

It does not matter which side we pick, so we will use the rightmost
of the left subtree. First, we copy the value of the rightmost of
the left subtree into the node that will be deleted.

Then we replace the rightmost of the left subtree with its left
subtree.

CHAPTER 7. SETS 100

Implementation

public boolean remove(int x) {

// Node to be removed.

Node curNode = root;

// Traverse through binary tree.

while (curNode != null) {

// If found element, use node.

if (x == curNode.value) {

break;

}

// Traverse through left child.

else if (x < curNode.value) {

curNode = curNode.left;

}

// Traverse through right child.

else {

curNode = curNode.right;

}

}

// If node was not found, return false.

if (curNode == null) {

return false;

}

CHAPTER 7. SETS 101

// Case 1: Removed node has no children.

if (curNode.left == null && curNode.right == null) {

// Special case if root.

if (curNode == root) {

this.root = null;

}

// Replace node with null.

else {

curNode.parent.replaceChild(curNode, null);

}

}

// Case 2a: Removed node only has a right child.

else if (curNode.left == null) {

// Special case if node is root.

if (curNode == root) {

root = curNode.right;

root.parent = null;

}

// Replace current node with right child.

else {

curNode.parent.replaceChild(curNode, curNode.right);

}

}

// Case 2b: Removed node only has a left child.

else if (curNode.right == null) {

// Special case if node is root.

if (curNode == root) {

root = curNode.left;

root.parent = null;

}

// Replace current node with left child.

else {

curNode.parent.replaceChild(curNode, curNode.left);

}

}

// Case 3: Removed node has two children.

else {

// Get rightmost of left subtree.

Node rightmost = curNode.left;

CHAPTER 7. SETS 102

while (rightmost.right != null) {

rightmost = rightmost.right;

}

// Copy rightmost of left subtree to removed node’s.

curNode.value = rightmost.value;

// Replace rightmost of left subtree with left child.

rightmost.parent.replaceChild(rightmost,

rightmost.left);

}

size--;

return true;

}

7.4.5 Print Tree

In a binary search tree, we can print the elements in order.

Implementation

public String dfs(Node curTree) {

if (curTree == null) {

return "";

}

String ret = "";

// Print left child.

ret += dfs(curTree.left);

// Print current node.

ret += curTree.value;

ret += ",";

// Print right child.

ret += dfs(curTree.right);

return ret;

}

public String toString() {

String ret = "";

if (root != null) {

CHAPTER 7. SETS 103

ret += dfs(root);

}

return ret.substring(0, ret.length() - 1);

}

7.4.6 Exercises

1. Write a function to determine if a binary tree is a binary
search tree.

7.5 Exercises

1. Given a list of words, determine how many of them are
anagrams of each other. An anagram is a word that can
have its letters scrambled into another word.

• For example, silent and listen are anagrams but banana
and orange are not.

2. Given the friend lists of two people, find the number of
mutual friends.

3. Given an array of numbers, find the number of pairs of
numbers that sum to 0.

4. Given an array of numbers, find the number of tuples of size
4 that add to A.

• For example in the list (10,5,-1, 3, 4, -6) the tuple of
size 4 (-1,3,4-6) adds to 0.

Chapter 8

Maps

8.1 Maps

Prerequisites: Sets

A map is an abstract data type that stores key-value pairs.

Imagine you had a English dictionary. If you look up a word,
you can find it’s definition. For example if you looked up the
word ’cat’ in the English dictionary, you would look through the
dictionary alphabetically until you found the word ’cat’ and then
you would look at the definition: ’a feline animal’. If you really
wanted to, you could also add your own words into the dictionary
and the definitions of your words. This type of structure is called
a map.

Maps (also called dictionaries) are abstract data types that store
pairs of key-values and can be used to look up values from the
keys. The keys are like the words in an English dictionary and
the definitions can be seen as the values. Maps are able to insert
key-value pairs, retrieve values from keys, and delete key-value

104

CHAPTER 8. MAPS 105

pairs.

Type Get Put Deletion

Hash Map O(1) O(1) O(1)
Tree Map O(log n) O(log n) O(log n)

8.2 Hash Map

Prerequisites: Map, Hash Set

Hash maps are maps that use hash sets to store pairs of key values.
Implementations of hash maps are very similar to hash sets.

Type Get Put Deletion

Hash Map O(1) O(1) O(1)

8.2.1 Class

Our implementation of a Hash Map will be very similar to a Hash
Set except instead of storing values, we will be storing a pair
consisting of a key and value.

public class Pair {

int key;

String value;

public Pair(int key, String value) {

this.key = key;

this.value = value;

}

}

Inside our implementation of a hash map we will store the buckets
using an array of linked lists of pairs, the number of buckets, and
the number of elements in the set.

CHAPTER 8. MAPS 106

public class HashMap {

public LinkedList<Pair>[] buckets;

public int bucketsSize = 10;

public int size = 0;

public static final double COLLISION_CHANCE = 0.3;

public HashMap() {

buckets = new LinkedList[10];

for (int i = 0; i < bucketsSize; i++) {

buckets[i] = new LinkedList<Pair>();

}

size = 0;

}

}

Since most of the implementation is the same as Hash Set, we
will skip most of the explanations.

8.2.2 Resize

Resizing is the same as a Hash Set, but we copy the pairs instead
of only the values.

public void resize() {

// Double number of buckets.

int newBucketsSize = bucketsSize * 2;

LinkedList<Pair>[] newBuckets = new

LinkedList[newBucketsSize];

// Create new buckets.

for (int i = 0; i < newBucketsSize; i++) {

newBuckets[i] = new LinkedList<Pair>();

}

// Copy elements over and use new hashes.

for (int i = 0; i < bucketsSize; i++) {

for (Pair y : buckets[i]) {

CHAPTER 8. MAPS 107

int hash = getHash(y.key, newBucketsSize);

newBuckets[hash].push(y);

}

}

// Set new buckets.

buckets = newBuckets;

bucketsSize = newBucketsSize;

}

8.2.3 Put

To put a key value pair in a hash map, we first check if the key
exists in a pair in the Hash Map. If the key already exists, we
update the value of the pair. Otherwise, we create a new key
value pair in the map.

public boolean put(int key, String value) {

// Get hash of x.

int hash = getHash(key, bucketsSize);

// Get current bucket from hash.

LinkedList<Pair> curBucket = buckets[hash];

// Check if bucket contains key.

for(Pair p: curBucket){

// Overwrite value if key already exists and return

false.

if(p.key == key){

p.value = value;

return false;

}

}

// Otherwise, add pair to the bucket.

curBucket.push(new Pair(key, value));

CHAPTER 8. MAPS 108

// Resize if the collision chance is higher than

threshold.

if ((float) size / bucketsSize > COLLISION_CHANCE) {

resize();

}

size++;

return true;

}

8.2.4 Get

To get the value from a hash set from a key, we check if the key-
value exists and if it does we return the value. Otherwise, we
return null.

public String get(int key) {

// Get hash of x.

int hash = getHash(key, bucketsSize);

// Get current bucket from hash.

LinkedList<Pair> curBucket = buckets[hash];

// Look for key in bucket.

for(Pair p: curBucket){

// Return value if keys are equal.

if(p.key == key){

return p.value;

}

}

// Return null if not found.

return null;

}

CHAPTER 8. MAPS 109

8.2.5 Remove

To remove a key-value pair, we first search for the key-value pair
in the map and remove it from its bucket.

public boolean remove(int key) {

// Get hash of x.

int hash = getHash(key, bucketsSize);

// Get bucket from hash.

LinkedList<Pair> curBucket = buckets[hash];

// Remove x from bucket and return if operation

successful.

for(Pair p: curBucket){

// Remove pair from bucket if keys match.

if(p.key == key){

return curBucket.remove(p);

}

}

// Return false if key not found in map.

return false;

}

8.2.6 Exercises

1. Create a hash map for a contact list (phone numbers as
keys, names as value).

8.3 Tree Map

Prerequisites: Maps, Binary Search Tree

A tree map is a map which stores the values in a binary search
tree. To store elements in a tree map, they must be able to be

CHAPTER 8. MAPS 110

sorted by a property. To insert an element, it is added to the
binary tree. To delete an element, it is removed from the binary
tree. To check for membership, we do a binary search for the
element in the binary tree.

The advantage of tree maps is that they are maps maintained in
a sorted order.

Operation Membership Insertion Deletion

Time Complexity O(log n) O(log n) O(log n)

Tree Maps are implemented using binary search trees. Since the
implementation of a tree map is very similar to the implementa-
tion of a tree set, it will left as an exercise.

8.3.1 Exercise

1. Implement a Tree Map using the code of Binary Search Tree
and Hash Map as guides.

CHAPTER 8. MAPS 111

8.4 Exercises

1. Given a list of N strings, output the strings in alphabetical
order and the number of times they appear in the list.

2. Given a mapping of ids to names, output the ids in order
by lexicographical name.

Chapter 9

Priority Queue

9.1 Priority Queue

Prerequisites: Queue, Heap

A priority queue is a queue that takes elements which have the
highest priority first. This is either the maximum or minimum
property for all elements.

Consider a waiting list for lung transplants. The patients are
given a score when they are placed on the waiting list based on
whether they smoke, risk factors, age, expected time left, etc.
When a lung is available, the patient with the highest score will
receive the lung first. During this time, it is possible more patients
could be added to the queue. The behaviour is similar to a queue
but instead of the first person getting in the queue getting a lung
first, the person with the highest score will get it. This means
that if Sam, who has a score of 60, joins the queue after Bob, who
has a score of 40, Sam will get the lung first even though Bob was
in the queue before him.

112

CHAPTER 9. PRIORITY QUEUE 113

A priority queue is an abstract data structure with two operations:
push and pop. Push adds an element into the priority queue and
pop removes the highest or lowest element.

A priority queue is usually implemented as a heap because it is
the most efficient implementation.

Implementation Push Pop

Heap O(log n) O(log n)

9.2 Heap

Prerequisites: Queue

Heaps are data structures that can pop the maximum or minimum
value or push a value very efficiently. Heaps are special binary
trees which have the property that: the value of each node is
greater than the values of all its children (a max heap) or the
value of each node is less than the values of all its children (a
min heap). Priority queue’s are most efficiently implemented as
heaps. This guarantees that the maximum or minimum element
is the root node.

Heaps store their data level by level in a binary tree. This allows
us to store heaps in an array. The root index is 0. For every node
with index i, the left index can be found by using the formula
2=i+1 and the right index can be found by using the formula 2=i
+ 2. The parent of a node can be found by integer division as
(i-1)/2.

root = 0

leftChild = index * 2 + 1

rightChild = index * 2 + 2

parent = (index - 1)/2

Indexes of a heap

CHAPTER 9. PRIORITY QUEUE 114

Example Heap:

A heap has two operations: push and pop. Pushing an element
into a heap adds it into the heap while ensuring that the properties
of the heap still hold. Popping removes an element from the top
of the heap and the heap needs to ensure that the properties of
the heap still hold.

Operation Resize Push Pop Heapify

Time Complexity O(n) O(log n) O(log n) O(n)

CHAPTER 9. PRIORITY QUEUE 115

9.2.1 Class

We will implement a max heap in Java and in our class we need
to store the elements in the heap and the size of the heap.

public class Heap {

public int[] arr;

public int size;

public Heap(int startSize) {

arr = new int[startSize];

size = 0;

}

}

9.2.2 Resize

When the heap reaches capacity, we need to resize it to be able
to contain more elements.

public void resize() {

int[] newArr = new int[arr.length * 2];

for (int i = 0; i < size; i++) {

newArr[i] = arr[i];

}

arr = newArr;

}

9.2.3 Swap

Swap will switch two nodes in the heap.

public void swap(int a, int b) {

int tmp = arr[a];

CHAPTER 9. PRIORITY QUEUE 116

arr[a] = arr[b];

arr[b] = tmp;

}

9.2.4 Push

Pushes the number x into the priority queue. We can do this by
adding it to the bottom of the heap and then keep swapping it
upwards if it is greater than the parent.

Example:

Add 9 to the end of the heap.

CHAPTER 9. PRIORITY QUEUE 117

The parent of 9 is 3 and smaller so we can swap the two.

The parent of 9 is 8 and smaller so we can swap the two.

Since the parent of 9 is 10 and greater than 9 then we can stop.
We can also see that the heap structure is still valid.

public void push(int x) {

if (size >= arr.length) {

resize();

}

CHAPTER 9. PRIORITY QUEUE 118

// Insert to the end of the heap.

arr[size] = x;

size++;

int idx = size - 1;

int parent = (idx - 1) / 2;

// Push the node up until the parent is larger.

while (idx > 0 && arr[parent] < arr[idx]) {

swap(parent, idx);

idx = parent;

parent = (idx - 1) / 2;

}

}

9.2.5 Pop

Popping removes the greatest element in the heap. Since the root
is guaranteed to be the greatest element as a property of a heap,
we remove it and return that element. After removing the root,
we replace it with the element at the bottom of the heap and we
can keep swapping it with its children until the heap property is
satisfied.

Let’s do an example of where we pop from a heap. We want to
remove the root of the heap and replace it with the last element
of the heap.

CHAPTER 9. PRIORITY QUEUE 119

We switch the node and replace it with the last element in the
heap.

The largest child is the left child of 8 and it is larger than the
current node, so we swap them.

CHAPTER 9. PRIORITY QUEUE 120

The largest child is the right child of 7 and it it larger than the
current node, so we swap the nodes again.

When the current node is larger than both children or the current
node is at the bottom, then we can stop.

public void bubbleDown(int idx) {

while (idx < size) {

int left = idx * 2 + 1;

int right = idx * 2 + 2;

// If both child exists.

if (left < size && right < size) {

// If left child is larger than right child and

current node.

if (arr[left] > arr[right] && arr[left] > arr[idx]) {

swap(left, idx);

idx = left;

CHAPTER 9. PRIORITY QUEUE 121

}

// If right child is larger or equal than left child

and current node.

else if (arr[right] >= arr[left] && arr[right] >

arr[idx]) {

swap(right, idx);

idx = right;

}

// If no children, stop.

else {

break;

}

}

// If there is only a left child.

else if (left < size) {

swap(left, idx);

idx = left;

}

// If there is only a right child.

else if (right < size) {

swap(right, idx);

idx = right;

}

else {

break;

}

}

}

public int pop() {

if (size == 0) {

return 0;

}

// Swap root and last element of heap.

int ret = arr[0];

arr[0] = arr[size - 1];

size--;

// Push the root down until parent is greater than

CHAPTER 9. PRIORITY QUEUE 122

children

bubbleDown(0);

return ret;

}

9.2.6 Heapify

Heapify takes an array of N elements and transforms it into a heap
in the same array. The runtime of heapify is suprisingly O(n) and
the proof of that is beyond the scope of this book.

public void heapify(int arr[]) {

this.arr = arr;

// Reach height of tree.

for (int i = 0; i < Math.floor(arr.length / 2.0); i++) {

// Iterate through array.

bubbleDown(i);

}

}

9.2.7 Exercises

1. Implement a min heap in Java.

2. Write a function that checks if an array is a heap.

3. Prove that heapify is O(n).

9.3 Exercises

1. Given a list of N numbers, find the M largest numbers.
(Note you can do better than O(N log N)).

CHAPTER 9. PRIORITY QUEUE 123

2. Given N lists of N numbers, find the N largest numbers.

Part IV

Sorting

124

125

Introduction

Sorting is arranging an array of N elements in either increasing or
decreasing order by some properties. It is very useful in computer
science for efficiency in other algorithms that usually require a
search.

A stable sort is a sort that can preserve sorting of other properties.
For example, if we have:

(3,G), (1,G), (3, A), (6 K), (1,B)

and we want to sort by the first property in increasing order, we
will have:

(1, G) (1,B) (3,G), (3,A), (6 K)

If we sort again by the second property we have:

(1,B) (3, A) (1, G) (3, G), (6,K)

then the sort is stable as the first sort is preserved. However, if
we sorted differently by the second property and got:

(1,B) (3, A) (3, G) (1, G) (6, K)

then the sort would be unstable.

Chapter 10

Slow Sorts

Slow sorts are sorts that have the runtime of O(n2). Although
they should almost never be used, it is good to understand how
to implement them.

Name Runtime

Bubble Sort O(n2)
Selection Sort O(n2)
Insertion Sort O(n2)

10.1 Bubble Sort

Bubble sort is one of the most basic sorting algorithms Its name
describes how the algorithm works: bigger bubbles float to the
top. Each time we pass through the array, we swap adjacent
bigger elements with smaller elements. We keep passing through
the array bubbling bigger elements to the top and until the array
is sorted. It can be proved that you will need to pass through the
array at most N times. Try to prove this for yourself.

126

CHAPTER 10. SLOW SORTS 127

10.1.1 Implementation

Bubble sort works by going through the array multiple times and
swapping elements that are out of order as we go through the
array. Every pass through the array, we move the largest element
to the end.

Code

public static void bubbleSort(int array[]) {

// Keep going through array unless until no swaps are

made.

boolean swapped = true;

while (swapped) {

swapped = false;

// Iterate through the array.

for (int j = 1; j < array.length; j++) {

// Swap if current element is bigger then next.

if (array[j - 1] > array[j]) {

// Swap two adjacent elements.

int temp = array[j];

array[j] = array[j - 1];

array[j - 1] = temp;

swapped = true;

CHAPTER 10. SLOW SORTS 128

}

}

}

}

10.2 Selection Sort

Selection sort works by finding the smallest element in the array
and swapping it with the first element. Then it finds the second
smallest element and swaps it with the second element and it does
this until the array is sorted.

10.2.1 Implementation

We keep picking the smallest element and swapping it with the
current position until the array is sorted.

CHAPTER 10. SLOW SORTS 129

Code

public static void selectionSort(int array[]) {

// Iterates through the array selecting the smallest

elements

for (int i = 0; i < array.length - 1; i++) {

int minIndex = i;

for (int j = i + 1; j < array.length; j++) {

// Find the index of the smallest element from i to

n.

if (array[j] < array[minIndex]) {

minIndex = j;

}

// Swap the smallest element with the element at i.

int temp = array[i];

array[i] = array[minIndex];

array[minIndex] = temp;

}

}

}

10.3 Insertion Sort

Insertion is a sort that works by inserting unused elements into
a sorted array. We start with an empty array and we add the
first element to the array. We then add the second element to the
array and we ”insert” it by shifting elements. We keep doing this
until the array is sorted.

10.3.1 Implementation

We split the original array into two parts: the first part is sorted
and the second part is unsorted. We take the first element from
the second part and insert it into the sorted part. We keep doing

CHAPTER 10. SLOW SORTS 130

this until we have no more elements in the unsorted part and we
only have the sorted part.

Code

public static void insertionSort(int[] array) {

int i,j;

// Iterate through size of array.

for (j = 1; j < array.length; j++) {

int element = array[j];

// Shift all elements until beginning of array or

correct position.

for (i = j - 1; (i >= 0) && (array[i] < element); i--)

{

CHAPTER 10. SLOW SORTS 131

array[i + 1] = array[i];

}

// Insert element into correct position.

array[i + 1] = element;

}

}

Chapter 11

Fast Sorts

Fast sorts are sorts that have a runtime of O(n log n). They
are very fast and you will usually use merge sort or quick sort
for sorting in the real world. Most language will have their own
implementation of a quick sort or merge sort in their standard
libraries.

Name Runtime

Heap Sort O(n log n)
Merge Sort O(n log n)
Quick Sort O(n log n)

11.1 Heap Sort

Prerequisites: Heap

Heap sort is a sort that takes advantage of the efficiencies of a
heap. To sort an array of N elements, we convert it to a heap
by using heapify and then we pop out all the elements one by
one since can the root element will be either the maximum or
minimum element.

132

CHAPTER 11. FAST SORTS 133

11.1.1 Implementation

We can simply use the heap built into the standard library for
this sort by adding all the elements to the array which is O(n log
n) and then popping all the elements which is O(n log n).

Code

public void heapSort(int[] arr) {

// Use a built-in heap.

PriorityQueue<Integer> pq = new PriorityQueue<Integer>();

// Add all elements into heap.

for (int i = 0; i < arr.length; i++) {

pq.add(arr[i]);

}

// Pop all elements from heap.

for (int i = 0; i < arr.length; i++) {

arr[i] = pq.poll();

}

}

11.2 Merge Sort

Prerequisites: Recursion

Merge sort works by breaking down the sorting into smaller pieces.
If we want to sort N elements, we can sort the first half of the
elements, sort the second half and then merge the results to-
gether. To sort the first half, we can do the exact same thing of
sorting the first quarter and the second quarter and merging the
results.

CHAPTER 11. FAST SORTS 134

11.2.1 Implementation

Merge sort work be breaking down the problem into smaller and
smaller parts and then combining those parts to solve the larger
problem.

We can keep splitting the list into half until each piece has zero
or one elements. We can then combine the results of each piece
repeatedly until the entire list is sorted.

Example:

Formalization

Let merge(arr1,arr2) that combines two sorted arrays into

one sorted array.

Example:

merge([1,5,7,9], [2,4,8])

= [1, 2, 4, 5, 7, 8, 9]

CHAPTER 11. FAST SORTS 135

Let sort(arr) sort an array

Let middle be arr.length / 2

sort([x]) = [x]

sort([x,y]) = [x,y] if x<y

sort([x,y]) = [y,x] otherwise

sort(arr) = merge(sort(arr[0..middle]),

sort(arr[middle..arr.length])

Example:

sort([3, 7, 1, 9, 8, 4, 5])

= merge(sort([3, 7, 1]), sort([9, 8, 4, 5]))

= merge(merge(sort([3, 7]), sort([1]), merge(sort([9, 8]),

sort([4, 5])))

= merge(merge([3, 7], [1]), merge([8, 9], [4, 5])

= merge([1, 3, 7], [4, 5, 8, 9])

= [1, 3, 4, 5, 7, 8, 9]

Code

We will implement our solution in Java that reflects our formal-
ization in a way that is easier to understand but more inefficient.
In our code, we create new arrays to store merged results but we
can actually do this in place without extra memory (left as an
exercise).

// Merges two sorted arrays v1 and v2 into a new sorted

array

public static Vector<Integer> merge(Vector<Integer> v1,

Vector<Integer> v2) {

Vector<Integer> merged = new Vector<Integer>();

int i = 0, j = 0;

// Always take the smaller element of the two vectors

while(i < v1.size() && j < v2.size()){

if(v1.get(i) < v2.get(j)){

merged.add(v1.get(i));

i++;

} else {

CHAPTER 11. FAST SORTS 136

merged.add(v2.get(j));

j++;

}

}

if (i >= v1.size()){

// Add the rest of v2

while(j < v2.size()){

merged.add(v2.get(j));

j++;

}

} else {

// Add the rest of v1.

while(i < v1.size()){

merged.add(v1.get(i));

i++;

}

}

return merged;

}

// Merge sorts an array

public static Vector<Integer> mergeSort(Vector<Integer> v)

{

// Base case if 1 or 0 elements.

if (v.size() <= 1) {

return v;

}

// Get middle of array.

int middle = v.size()/2;

// Split vector into two halves.

Vector<Integer> firstHalf = new

Vector<Integer>(v.subList(0, middle));

Vector<Integer> secondHalf = new

Vector<Integer>(v.subList(middle, v.size()));

// Return merged halves.

return merge(mergeSort(firstHalf),

mergeSort(secondHalf));

}

CHAPTER 11. FAST SORTS 137

// Example usage:

Vector<Integer> v = new Vector<Integer>();

Collections.addAll(v, 5,4,10,8,9,2);

System.out.println(mergeSort(v));

11.2.2 Exercises

1. Write the formalization for merge(arr1, arr2).

2. Rewrite merge sort to not use any additional memory (i.e.
merging and splitting arrays is done in place and no new
vectors or arrays are created). You should rewrite the func-
tion to sort in place: void mergeSort(int[] arr, int start, int
end) and void merge(int arr[]. int start, int end, int start2,
int end2).

11.3 Quick Sort

Quick Sort is another fast sorting algorithm that uses divide and
conquer. In quick sort, an element is selected as a ”pivot”. The
list is then divided into two sublists: a list of elements less than
(or equal to) the pivot and a list of elements greater than the
pivot. Each sublist is sorted and then appended together along
with the origin pivot.

CHAPTER 11. FAST SORTS 138

11.3.1 Implementation

Formalization

Let quicksort(array) sort the array using quicksort

Base case:

quicksort([]) = []

quicksort([x]) = [x]

Recurrence:

Let pivot be a random element in array

quicksort(arr) = quicksort(arr[elements < pivot]) +

[pivot] + quicksort(arr[elements >= pivot])

Example:

quicksort([6,1,4,3,5,7,9,2,8,0])

= quicksort([1,4,3,2,0] + [5] + quicksort([6,7,9,8])

CHAPTER 11. FAST SORTS 139

= (quicksort([1,2,0]) + [3] + quicksort([4])) + [5] +

(quicksort([6]) + [7] + quicksort([9,8]))

= (quicksort([0,1]) + [2] + quicksort([]) + [3] + [4]) +

[5] + ([6] + [7] + [8, 9])

= (([0, 1] + [2] + []) + [3] + [4]) + [5] + ([6] + [7] +

[8, 9])

= [0, 1, 2, 3, 4] + [5] + [6, 7, 8, 9]

= [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Code

We will implement our solution in Java that reflects our formal-
ization in a way that is easier to understand, but more inefficient.
In our code, we create new arrays to store partitions and merged
results but we can actually do this in place without extra memory
(left as an exercise).

// Quick sorts array from [first..last]

public static Vector<Integer> quickSort(Vector<Integer>

arr) {

// Base case if sorting one or zero elements.

if (arr.size() <= 1) {

return arr;

}

// Select a random pivot.

int pivot = (int) (Math.random() * arr.size());

// Store each part.

Vector<Integer> lower = new Vector<Integer>();

Vector<Integer> higher = new Vector<Integer>();

Vector<Integer> equal = new Vector<Integer>();

// Splits element into each part.

for (int i = 0; i < arr.size(); i++) {

if (arr.get(i) < arr.get(pivot)) {

lower.add(arr.get(i));

}

else if (arr.get(i) > arr.get(pivot)) {

CHAPTER 11. FAST SORTS 140

higher.add(arr.get(i));

}

else {

equal.add(arr.get(i));

}

}

// Combine results of all parts.

Vector<Integer> result = new Vector<Integer>();

result.addAll(quickSort(lower));

result.addAll(quickSort(equal));

result.addAll(quickSort(higher));

return result;

}

11.3.2 Exercises

1. Rewrite quickSort such that we do not use any additional
memory (i.e. rearranging into parts is done in place in the
array and we do not create any additional vector or arrays).
You should rewrite the function to sort in place: void quick-
Sort(int arr[], int start, int end).

Chapter 12

Super Slow Sorts

Just for fun, these are some silly sorts that you should never
use.

Name Runtime

Bozo Sort O(?)
Permutation Sort O(n!)
Miracle Sort O(?)

12.1 Bozo Sort

Bozo sort is a sort that keeps randomly arranging an array until
it is sorted. This sort should never been used.

12.1.1 Implementation

We keep checking if the array is sorted and if is not, we pick two
random indexes to swap.

141

CHAPTER 12. SUPER SLOW SORTS 142

Code

boolean sorted(int[] arr) {

for (int i = 1; i < arr.length; i++) {

if (arr[i] < arr[i - 1]) {

return false;

}

}

return true;

}

public void bozoSort(int[] arr) {

int i = 0;

// Keep trying until sorted.

while (!sorted(arr)) {

// Pick two random positions.

int x = (int) (Math.random() * arr.length);

int y = (int) (Math.random() * arr.length);

// Swap array positions.

int temp = arr[x];

arr[x] = arr[y];

arr[y] = temp;

}

}

12.2 Permutation Sort

Permutation sort is a sort that keeps permuting the array until it
is sorted. It is the slowest sort that will guarantee that the array
will be sorted.

CHAPTER 12. SUPER SLOW SORTS 143

12.2.1 Implementation

We keep finding the next permutation until the array is sorted.

Code

void permuteSort(int[] arr){

while(!sorted(arr)){

permute(arr);

}

}

12.3 Miracle Sort

Prerequisites: Miracles, Sense of Humour

Miracle sort is a sort that truly requires a miracle. We keep
checking the array until it is sorted. It requires that some external
force (a miracle?) changes some bits in the computer in a way
that it becomes sorted.

12.3.1 Implementation

We keep checking if the array is sorted until some miracle oc-
curs.

Code

public void miracleSort(int[] arr) {

boolean sorted = false;

do {

sorted = true;

for (int i = 1; i < arr.length; i++) {

CHAPTER 12. SUPER SLOW SORTS 144

if (arr[i] < arr[i - 1]) {

sorted = false;

break;

}

}

} while (!sorted);

}

Chapter 13

Exercises

1. Given two sorted arrays of N numbers, merge the two arrays
into an single array of size 2N.

2. Find the minimum number of swaps to sort an array.

3. Find the minimum number of adjacent swaps to sort an
array.

4. Let flip(int[] arr, int x) be a function that reverses all el-
ements from arr[0..x]. Devise an algorithm that sorts the
array.

145

Part V

Graph Theory

146

147

Introduction

Next: Advanced Graph Theory

Graphs are a set of objects where some pairs of objects called
nodes or verticies are connected by links called edges. The nodes
here can be seen numbered from 1 to 6. There are edges connect-
ing these various nodes.

A undirected graph is a graph where an edge from A to B is the
same as the edge from B to A for all edges. The above graph is
undirected.

A directed or bidirectional graph is a graph where edges have
direction meaning if there is an edge from A to B then there may
not be an edge from B to A.

A subgraph is a subset of edges and vertices within a graph.

148

A directed acyclic graph (DAG) is a graph with no directed cycles
(see topological sorting).

A weighted graph is a graph that contains weights or values as-
signed to each edge or node. Usually these weights act as the cost
to reach/use that node.

Chapter 14

Graph
Representations

A graph can be represented in various ways, but the most useful
representations are as an adjacency matrix or as an adjacency
list.

14.1 Adjacency Matrix

An adjacency matrix stores a graph of N nodes with a two di-
mensional NxN array. We let adjMatrix[i][j] represents the weight
between the node i and node j. If we have a sparse graph which
has many nodes but few edges, the memory storage will be very
inefficient and it would be better to use an adjacency list. How-
ever, if the graph is very dense, or there are few nodes, then an
adjacency matrix is quick and easy to use. Checking if an edge
exists between two nodes is O(1).

Example:

149

CHAPTER 14. GRAPH REPRESENTATIONS 150

The adjacency matrix of the graph is:

1 2 3 4 5 6

1 0 1 0 0 1 0
2 1 0 1 0 1 0
3 0 1 0 1 0 0
4 0 0 1 0 1 1
5 1 1 0 1 0 0
6 0 0 0 1 0 0

14.1.1 Implementation

class edge {

int weight, source, dest;

public edge(int source, int dest, int weight) {

this.source = source;

this.dest = dest;

this.weight = weight;

}

}

public static int[][] getAdjMatrix(Vector<edge> edges, int

n) {

int adjMatrix[][] = new int[n][n];

for (int i = 0; i < n; i++) {

for (int j = 0; j < n; j++) {

CHAPTER 14. GRAPH REPRESENTATIONS 151

adjMatrix[i][j] = 0;

}

}

for (int i = 0; i < edges.size(); i++) {

edge e = edges.get(i);

adjMatrix[e.source][e.dest] = e.weight;

adjMatrix[e.dest][e.source] = e.weight;

}

return adjMatrix;

}

14.2 Adjacency List

An adjacency list stores a graph in an array of linked lists. Each
node stores its neighbours by keeping a linked list of edges. Ad-
jacency lists are slower when checking if an edge exists but they
are more memory efficient since they only need to store the total
number of edges.

Example:

The adjacency list of the graph is:

CHAPTER 14. GRAPH REPRESENTATIONS 152

Node edges

1 2 5
2 1 3 5
3 2 4
4 3 5 6
5 1 2 4
6 4

14.2.1 Implementation

Here is a function that takes in an array of edges and returns an
adjacency list of the graph.

class edge {

int weight, source, dest;

public edge(int source, int dest, int weight) {

this.source = source;

this.dest = dest;

this.weight = weight;

}

}

public static Vector<Vector<edge>> getAdjList(Vector<edge>

edges, int n) {

Vector<Vector<edge>> adjList = new

Vector<Vector<edge>>();

for (int i = 0; i < n; i++){

adjList.add(new Vector<edge>());

}

for(edge e: edges){

adjList.get(e.source).add(e);

adjList.get(e.dest).add(e);

}

return adjList;

}

Chapter 15

Shortest Path

Prerequisites: Graph Theory

The shortest path is defined as a path from one node to an-
other while trying to minimize a certain property (least number
of nodes, smallest total weight). However, shortest paths may
have negative weights which leads to cycles.

Algorithm Time Detect cycles?

Floyd Warshall O(N3) Yes
Bellman Ford O(N2) Yes
Dijkstra’s O(N log N) No

• Floyd Warshall computes the shortest path between all pairs
of nodes.

• Bellman Ford computes the shortest path between one node
to every other node.

• Dijkstra’s computes the shortest path between two nodes.

153

CHAPTER 15. SHORTEST PATH 154

15.1 Dijkstra’s

Prerequisites: Shortest Path, Priority Queue, Greedy Algorithm

Dijkstra’s is a greedy approach to find the shortest path in a
graph with positive weights. It has many useful applications in
networking and it can be extended to a variety of problems.

Dijkstra works by beginning at the starting node repeatedly pick-
ing the next closest node of those already visited.

If Dijkstra’s is implemented using a priority queue, the run time
is O(n log n).

If a negative cycle exists within the graph, then the algorithm
breaks as it will repeatedly try to take the negative edges. See the
Bellman Ford algorithm for finding negative cycles in a graph.

A naive fix for negative cycles would be to offset all edges by the
largest negative edge and then subtract it from the resulting total
but this does not work. Consider an example where you have the
path from A to B. The first path from A->B has a weight of 2
and the second path has weights 1,1,-2. Clearly, the second route
has less cost. If we try to make the length positive by adding all
costs by 2, we will have the first path of weight 4 and the second
path of weights 3,3,0. From the adjusted weights, the first path
minimizes the total cost which is incorrect.

In general, Dijkstra is usually the method for finding the minimum
cost between two nodes in any kind of network. For example, Di-
jkstra can be used in computer networking to find the shortest
path between two hosts. It can also be used in flight network-
ing to find the cheapest cost to get from one airport to another
airport.

CHAPTER 15. SHORTEST PATH 155

15.1.1 Implementation

At each node we visit we keep track of the minimum cost it takes
to reach to reach that node from the starting node.

1. Start at the starting node.

2. Find an unvisited node that has the least cost to reach from
the visited nodes.

3. Mark that node as visited.

4. Repeat until all nodes are visited.

When we reach a node for the first time, it will be the shortest
path from the start node to that node. (Try to prove this to
yourself).

We first start at the starting node. The distance from the starting
node to the starting node is obviously 0.

From the starting node, we have two nodes we can reach. The
top node has a cost of 3 to reach and the bottom node has a cost
of 5 to reach.

CHAPTER 15. SHORTEST PATH 156

We pick the smallest node that can be reached and we mark it
as visited. Once we visit a node, we can guarantee that it is the
smallest cost to reach it. The next nodes that can be reached
have minimum costs of 10, 5 and 5.

We are indifferent to both 5’s as they are both the minimum and
we can choose either. We mark the node as visited and we find
the minimum costs to other nodes which are 5,10,11.

CHAPTER 15. SHORTEST PATH 157

We take the next smallest which is 5 and we mark the node as
visited. The next costs are 10 and 11.

We take the smallest which is 10 and we now only have one last
node to reach at a cost of 11.

CHAPTER 15. SHORTEST PATH 158

Finally, we have the shortest path from the start node to the end
node.

Code

We can implement Dijkstra’s algorithm efficiently using a priority
queue.

class node implements Comparable<node> {

int weight, index;

public node(int weight, int index) {

this.weight = weight;

this.index = index;

}

public int compareTo(node e) {

return weight - e.weight;

}

}

public static int dijkstra(int[][] adjMatrix, int start,

int end) {

int n = adjMatrix.length;

PriorityQueue<node> pq = new PriorityQueue<node>();

// Initialize visited to false.

boolean visited[] = new boolean[n];

for (int i = 0; i < n; i++) {

CHAPTER 15. SHORTEST PATH 159

visited[i] = false;

}

// Add the start node to the queue.

pq.add(new node(0, start));

// Keep going until all nodes are visited or queue is

empty.

while (!visited[end] && !pq.isEmpty()) {

// Get node with lowest total weight.

node curNode = pq.poll();

// Skip node is already visited.

if (visited[curNode.index]) {

continue;

}

// Mark node as visited.

visited[curNode.index] = true;

// If current node is end node then we are done.

if (curNode.index == end) {

return curNode.weight;

}

// Iterate through neighbors of current node.

for (int i = 0; i < n; i++) {

// Iterate through each unvisited neighbor.

if (adjMatrix[curNode.index][i] > 0 && !visited[i]) {

// Set add edge weight to current weight.

int newWeight = curNode.weight +

adjMatrix[curNode.index][i];

pq.add(new node(newWeight, i));

}

}

}

return -1;

}

CHAPTER 15. SHORTEST PATH 160

15.1.2 Practice Exercises

1. Extend Dijkstra’s to return the order of nodes in the short-
est path from start to end (e.g. A→B→C).

2. Extend Dijkstra’s to find the best three shortest unique
paths from the start node to the end node.

3. Prove that Dijkstra’s algorithm works.

15.2 Bellman Ford

Prerequisites: Shortest Path

Bellman Ford is an algorithm that finds the shortest path from
one source node to every other node in the graph. The running
time is O(n2) and is able to find negative cycles.

15.2.1 Implementation

Bellman Ford can be done using backtracking to find the shortest
path in a graph. We first start at the starting node with a starting
cost of 0 and 0 edges used. For each node thats connected to that
node, we repeat and add to the cost of the node.

CHAPTER 15. SHORTEST PATH 161

We will do an example of the Bellman Ford algorithm on the above
graph. At each node we have the node index and the current
weight to reach that node. We start at node 0 with a weight of
0.

From node 0, we can reach node 1 and node 3. At node 1, we have
an accumulative weight of 3. At node 3, we have an accumulative
weight of 5.

From node 1, we can reach node 2 and node 4 with respective
accumulative weights of 10 and 5.

From node 3, we can reach node 4 with an accumulative weight
of 9.

CHAPTER 15. SHORTEST PATH 162

From node 2, we can reach node 5 with an accumulative weight
of 19.

From node 4, we can reach node 5 with an accumulative weight
of 11.

From node 4, we can reach node 5 with an accumulative weight
of 15.

Formalization

Let N be the number of nodes in the graph

Let edges an adjacency list of the graph where:

edges[source] contains all edges of the graph where

source is the source edge

An edge is represented as an object where:

edge.weight is the weight of the edge

edge.target is the target node of the edge

edge.source is the source node of the edge

Let start be the starting node

Let shortestPath[target] be the shortest path from the

source node to the target node

Let bellmanFord(target,n,w) be the shortest path from the

source node to the target node using n edges and cost

of w.

CHAPTER 15. SHORTEST PATH 163

bellmanFord(target, n , w)

Base Case:

bellmanFord(target, N , w):

stop

Recurrence:

bellmanFord(source, n, w):

shortestPath[source] = min(shortestPath[source], w)

bellmanFord(edge.dest, n + 1, w + edge.weight) for

edge in edges[source]

Example:

shortestPath = [0] * N

bellmanFord(start,0,0)

Implementation

We can rewrite this solution using dynamic programming to be
more efficient.

class edge {

int weight, source, dest;

public edge(int source, int dest, int weight) {

this.source = source;

this.dest = dest;

this.weight = weight;

}

}

public static int UNDEFINED = Integer.MIN_VALUE;

public static int BellmanFord(Vector<Vector<edge>>

adjList, int startNode,

int endNode) {

int n = adjList.size();

CHAPTER 15. SHORTEST PATH 164

// Let dist[i] be minimum distance from start to i.

int[] dist = new int[n];

// initialize dist[i]=0 and used[i]=false

for (int i = 0; i < n; i++) {

dist[i] = UNDEFINED;

}

dist[startNode] = 0;

// Maximum path to take is n-1 steps.

for (int i = 0; i < n - 1; i++) {

// Iterate through nodes.

for (int j = 0; j < n; j++) {

// Iterate through neighbors of the node.

for (int k = 0; k < adjList.get(j).size(); k++) {

// Only visit node if path is defined.

if (dist[j] == UNDEFINED) {

continue;

}

edge e = adjList.get(j).get(k);

// If dist[e.source] has been used

if (dist[e.source] != UNDEFINED) {

// If new dist < cur dist or not used, then

update node.

int newDist = dist[e.source] + e.weight;

if (newDist < dist[e.dest] || dist[e.dest] ==

UNDEFINED) {

dist[e.dest] = newDist;

}

}

}

}

}

// Check if negative cycle exists.

for (int j = 0; j < n; j++) {

for (int k = 0; k < adjList.get(j).size(); k++) {

edge e = adjList.get(j).get(k);

CHAPTER 15. SHORTEST PATH 165

// Check if edge can create negative cycle.

if (dist[e.source] + e.weight < dist[e.dest]) {

System.out.println("Negative cycle exists.");

}

}

}

// Check if no path exists.

if (dist[endNode] == UNDEFINED) {

System.out.println("No path from start to end");

}

// Return distance from start to end

return dist[endNode];

}

15.2.2 Exercises

1. Prove Bellman-Ford works.

2. Arbitrage occurs when you can exchange currencies for an-
other and make a profit. For example given a currency
exchange table:

USD CAD EURO

USD / 1.12 0.72
CAD 0.90 / 0.64
EURO 1.38 1.56 /

Notice that 1 USD -> 1.12 CAD -> 1.008 USD. Bellman Ford can
be used to find methods of arbitrage by using the vertex as cur-
rency and edges as transactions, and the weight as the exchange
rate. All that is needed is to find a path that maximizes product
of weights and finding a negative cycle. Write a program that
detects a path for arbitrage to occur.

CHAPTER 15. SHORTEST PATH 166

15.3 Floyd Warsahll

Prerequisites: Shortest Path, Dynamic Programming

Floyd Warshall is a algorithm for finding the shortest distances
between all pairs of nodes in a graph. The algorithm has a runtime
of O(n3) and is able to detect cycles.

15.3.1 Implementation

Floyd-Warshall uses a dynamic programming approach to finding
the shortest path between node A and node B. Every path from
node A to node B can be rewritten as a path from A to some
node in between plus the path from the node in between to node
B. The shortest path from A to B can be found by finding a node
C such that the shortest path from A to C plus the shortest path
from C to B is minimized.

CHAPTER 15. SHORTEST PATH 167

Formalization

Here is a recursive definition of the Floyd-Warshall algorithm:

Given a directed graph with N nodes and edges between

nodes:

Let edge(i,j) be the weight of the edge from node i to

node j in the graph

Let shortestPath(i,j) be the shortest path from i to j

Base Case:

shortestPath(i,i) = 0

Recursion:

shortestPath(i,j) = minimum of:

minimum of (shortestPath(i,k) + shortestPath(k,j)

for all unvisited nodes k)

edge(i,j) if exists

Code

class edge {

int weight, source, dest;

public edge(int source, int dest, int weight) {

this.source = source;

this.dest = dest;

this.weight = weight;

}

}

public static final int UNDEFINED = Integer.MIN_VALUE;

public static int[][] FloydWarshall(Vector<Vector<edge>>

adjList) {

int n = adjList.size();

// Let dist[i][j] be the minimum distance from i to j.

int[][] dist = new int[n][n];

CHAPTER 15. SHORTEST PATH 168

// Initialize all minimum distances to be undefined.

for (int i = 0; i < n; i++) {

for (int j = 0; j < n; j++) {

dist[i][j] = UNDEFINED;

}

}

// The minimum distance from a node to itself is 0.

for (int i = 0; i < n; i++) {

dist[i][i] = 0;

}

// Set distances for each edge.

for (int i = 0; i < n; i++) {

for (int j = 0; j < adjList.get(i).size(); j++) {

edge e = adjList.get(i).get(j);

dist[e.source][e.dest] = e.weight;

}

}

// Iterate through each intermediate node.

for (int k = 0; k < n; k++) {

// Iterate through each starting node.

for (int i = 0; i < n; i++) {

// Iterate through each ending node.

for (int j = 0; j < n; j++) {

// If there is a path from i to k and k to j.

if (dist[i][k] != UNDEFINED && dist[k][j] !=

UNDEFINED) {

// Distance from i to j is distance from i to k

plus distance from k

// to j.

int newDist = dist[i][k] + dist[k][j];

// Update distance from i to j, if the new

distance is less than

// current distance or if there is no existing

path from i to j.

if (dist[i][j] > newDist || dist[i][j] ==

UNDEFINED) {

CHAPTER 15. SHORTEST PATH 169

dist[i][j] = newDist;

}

}

}

}

}

// Check if there are negative cycles.

for (int i = 0; i < n; i++) {

// If the distance from a node to itself is negative,

then there is a

// negative cycle.

if (dist[i][i] < 0) {

System.out.println("negative cycle");

}

}

return dist;

}

15.3.2 Exercises

1. Prove Floyd Warshall works.

2. Extend Floyd Warshall to return the order of nodes in a
shortest path from the start to end (e.g. A→B→C)..

Chapter 16

Minimum Spanning
Tree

Prerequisites: Graph Theory

A spanning tree of a graph is a tree that spans all the nodes of
the graph but only using some of the edges to connect all the
nodes.

A minimum spanning tree is the spanning tree that requires the
minimum of some property such as total weight or total edges.

Spanning tree algorithms are essential in networking to ensure no
loops occur when sending data through a network.

Algorithm Desc Time Space

Prim’s Using greedy method O(n log n) O(n2)
Kruskal Using connected components O(n log n) O(n2)

170

CHAPTER 16. MINIMUM SPANNING TREE 171

16.1 Prim’s

Prerequisites: Priority Queue, Minimum Spanning Tree

Prim’s algorithm is a greedy algorithm that finds the minimum
spanning tree in a graph.

If implemented efficiently using a priority queue, the runtime is
O(n log n).

16.1.1 Implementation

Prim’s algorithm finds the minimum spanning tree using a greedy
fashion. It works as such:

1. Pick an arbitrary node.

2. Find the closest node to that node.

3. Find the closest node to the 2 nodes.

4. Find the closest node to the 3 nodes.

5. ...

6. Find the closest node to n-1 nodes.

The closest node is the node with the lowest cost edge to the
already connected nodes.

Example

Suppose we have the following graph and we would like the find
the minimum spanning tree.

CHAPTER 16. MINIMUM SPANNING TREE 172

We can start at any random node so this example, we will start
at 1.

The closest unpicked node to all the chosen nodes is 2 at a cost
of 2.

CHAPTER 16. MINIMUM SPANNING TREE 173

The closest unpicked node to all the chosen nodes is 7 at a cost
of 6.

The closest unpicked node to all the chosen nodes is 5 at a cost
of 6.

The closest unpicked node to all the chosen nodes is 4 at a cost
of 6.

CHAPTER 16. MINIMUM SPANNING TREE 174

The closest unpicked node to all the chosen nodes is 6 at a cost
of 8.

The last node to be chosen is 3 with a cost of 8.

CHAPTER 16. MINIMUM SPANNING TREE 175

Java Code

We can implement Prim’s algorithm in Java efficiently with a
priority queue of edges using the weight as the comparing prop-
erty.

class node implements Comparable<node> {

int weight, index;

public node(int weight, int index) {

this.weight = weight;

this.index = index;

}

public int compareTo(node e) {

return weight - e.weight;

}

}

public static int Prims(Vector<Vector<node>> adjList) {

// Current cost of MST.

int cost = 0;

int n = adjList.size();

PriorityQueue<node> pq = new PriorityQueue<node>();

// Keep track if each node is visited.

boolean visited[] = new boolean[n];

for (int i = 0; i < n; i++) {

visited[i] = false;

}

// Number of nodes visited.

int inTree = 1;

// Mark starting node as visited.

visited[0] = true;

// Add all edges of starting node.

for (int i = 0; i < adjList.get(0).size(); i++) {

pq.add(adjList.get(0).get(i));

CHAPTER 16. MINIMUM SPANNING TREE 176

}

// Keep going until all nodes visited.

while (!pq.isEmpty() && inTree < n) {

// Get the edge with the smallest weight.

node cur = pq.poll();

// Skip if node already used.

if (visited[cur.index]) {

continue;

}

inTree++;

visited[cur.index] = true;

cost += cur.weight;

// Add all the edges of the new node to the priority

queue.

for (int i = 0; i < adjList.get(cur.index).size();

i++) {

pq.add(adjList.get(cur.index).get(i));

}

}

// Graph not connected if number of nodes used is less

than total nodes.

if (inTree < n) {

return -1;

}

return cost;

}

16.1.2 Exercises

1. Prove that Prim’s algorithm works.

2. Extends Prim’s to output all the edges used.

CHAPTER 16. MINIMUM SPANNING TREE 177

16.2 Kruskal

Prerequisites: Sorting, Minimum Spanning Tree

Kruskal’s algorithm finds the minimum spanning tree using con-
nected components.

If Kruskal’s algorithm is implemented efficiently using a priority
queue, the runtime is O(n log n).

16.2.1 Implementation

1. Uniquely label each node.

2. Take the edge with the minimum weight.

3. If the edge connects nodes A and B with different labels, all
nodes with label B will be labeled with A. Otherwise, throw
the edge away.

4. Repeat 2-3 until all the nodes have the same label.

Example

We first start with each node uniquely labelled as a letter.

CHAPTER 16. MINIMUM SPANNING TREE 178

We first start with the edge with the smallest weight of 2 which
was between A and B. We add B to A’s component by labelling
B as A.

The next edge with the smallest weight is 5 which connects to C.
We add C to A’s component by labelling it as A.

There is a tie between edges with the smallest weight of 6 and
it doesn’t matter which one we take. For the purpose of this
example we will take the edge between D and G. We add G to
D’s component be labelling it as D.

CHAPTER 16. MINIMUM SPANNING TREE 179

Next we take the other edge with weight 6. We are connecting
the D and A components, thus we can label all the nodes with D
as A.

The next edge with smallest weight is 7 but it does not connect
two different components, thus we discard the edge. The next
two edges have weights 8 and we can randomly pick the edge to
E. We add E to A’s component by labelling it as A.

CHAPTER 16. MINIMUM SPANNING TREE 180

We take the other edge with weight 8 to F and add F to A’s
component by relabelling it as A.

All the nodes are the same label and all part of the same com-
ponent, thus by the algorithm, we have our minimum spanning
tree.

Code

We can implement Kruskal’s algorithm efficiently by using con-
nected components.

class edge implements Comparable<edge> {

int weight,source,dest;

public edge(int source,int dest,int weight) {

this.source = source;

this.dest = dest;

this.weight = weight;

}

public int compareTo(edge e) {

return weight-e.weight;

}

}

public static int getParent(int parents[], int x) {

// Base Case: parent of x is itself.

if (parents[x] == x) {

return x;

CHAPTER 16. MINIMUM SPANNING TREE 181

}

// Set current’s parent to highest parent.

parents[x] = getParent(parents, parents[x]);

// Returns parent.

return parents[x];

}

public static int Kruskal(Vector<Vector<edge>> adjList) {

int n = adjList.size();

// Array of parents of each node. Nodes with the same

parent are in the same component.

int parents[] = new int[n];

// Set parents of each node to itself.

for (int i = 0; i < n; i++) {

parents[i] = i;

}

int sum = 0;

PriorityQueue<edge> edges = new PriorityQueue<edge>();

// Iterate through each node.

for (int i = 0; i < n; i++) {

// Iterate through edges of node.

for (int j = 0; j < adjList.get(i).size(); j++) {

// Add edge to priority queue.

edges.add(adjList.get(i).get(j));

}

}

// Iterate through all edges.

while (!edges.isEmpty()) {

// Get edge with smallest weight.

edge e = edges.poll();

// Take edge if highest parent of source and

destination nodes are

// different i.e. take the edge if it connects

different components

CHAPTER 16. MINIMUM SPANNING TREE 182

if (getParent(parents, e.source) != getParent(parents,

e.dest)) {

// Set parent of source to highest parent of

destination node.

parents[e.source] = getParent(parents, e.dest);

// Add edge weight to MST weight.

sum += e.weight;

}

}

// Return MST weight.

return sum;

}

16.2.2 Exercises

1. Prove Kruskal’s Algorithm works.

2. Extend Kruskals’s to output the full minimum spanning tree
used.

16.3 Exercises

1. Given a weighted graph with N nodes, find the smallest
total cost to connect all nodes into 3 separate groups. (A
single node can be a group)

2. Same as 3, but a group must contain at least 3 other nodes.

Chapter 17

Topological Sorting

17.1 Topological Sorting

Prerequisites: Graph Theory, Depth First Search

A topological sort or topological order of a directed graph is an
order in which every node comes after its ancestors.

For example topological orders could be:

• (A, B, C, D, E, F, G)

• (B, A, D, C, F, E, G)

183

CHAPTER 17. TOPOLOGICAL SORTING 184

• (B, A, D, G, F, C, E)

But (B, A, C, F, D, E, G) is not a topological ordering because
D is an ancestor of F and it comes after F.

17.1.1 Implementation

Topological sort can implemented in O(n) time using DFS for
a directed acyclic graph (a digraph with no cycles). How it
works:

1. Start with an empty top order.

2. Pick any unmarked node.

3. Get the DFS preordering from that node for unvisited nodes.

4. Add the DFS to the head of the current order.

5. Mark every node that has been visited.

Example:

• Pick C

• DFS preorder from C is (C,E)

• Add DFS preorder to head [C,E]

• Pick F

CHAPTER 17. TOPOLOGICAL SORTING 185

• DFS preorder from F is (F)

• Add DFS preorder from F to head [F,C,E]

• Pick B

• DFS preorder from B is (B,D,G)

• Add DFS preorder from B to head [B,D,G,F,C,E]

• Pick A

• DFS preorder from A is (A)

• Add DFS preorder from A to head [A,B,D,G,F,C,E]

• Done, all nodes visited

A DFS order from a node is guaranteed to be a topological order.
Since we add everything to the head of the order, a child of a
node cannot appear before it.

Chapter 18

Connected
Components

18.1 Connected Components

A connected component is a subgraph where all the vertices in
the subgraph connect to each other.

Finding the number of distinct connected components can be done
using a breadth first search or a depth first search.

Finding the number the connected components for each node can
be done with a simple algorithm.

18.1.1 Implementation

1. Set each node’s parent to itself.

2. Pick an unused edge in the graph that is from node A to
node B, if the parent of A is not the same as parent of B
then set all nodes whose parent is B to parents of A.

186

CHAPTER 18. CONNECTED COMPONENTS 187

3. Repeat for all edges.

Example

We select a random edge from node 1 and node 2. We set the
parent node of 2 to node 1.

We select another random edge from node 5 to node 6.

CHAPTER 18. CONNECTED COMPONENTS 188

We pick another random edge and we set the parent to 5.

We take another random edge and we set the parents to 7.

We take another random edge and we have an interesting case,
two connected components are to be connected. We take all the
nodes whose parent is 1, and we set the new parent to 5.

CHAPTER 18. CONNECTED COMPONENTS 189

We take another random edge and set its parent to 1.

We take the last edge and set the last node parent to 7.

Java Code

public static int getParent(int x, int[] parent) {

CHAPTER 18. CONNECTED COMPONENTS 190

// If nodes parent is itself, then we reach the highest

parent.

if (parent[x] == x) {

return x;

}

// Set current node’s parent to highest parent.

parent[x] = getParent(parent[x], parent);

// Return highest parent.

return parent[x];

}

public static void connectedComponents(int adjMatrix[][]) {

int n = adjMatrix.length;

int[] parent = new int[n];

int i, j;

// Initialize every nodes parent to itself.

for (i = 0; i < n; i++) {

parent[i] = i;

}

// Iterate through each node.

for (i = 0; i < n; i++) {

// Iterate through each other node.

for (j = 0; j < n; j++) {

// If the two nodes have an edge.

if (adjMatrix[i][j] > 0) {

// Recursively get root parents of each node.

int pi = getParent(i, parent);

int pj = getParent(j, parent);

// Set parent of one to the other if they are

different.

if (pi != pj) {

parent[pj] = pi;

}

}

}

}

CHAPTER 18. CONNECTED COMPONENTS 191

}

Chapter 19

Cycle Detection

19.1 Cycle Detection

A cycle occurs in a graph when a duplicate node is encountered
when traversing a tree using a depth first search. In other words,
a cycle occurs when you can reach the same node through a path
in a graph.

An undirected graph where the number of edges is greater than
or equal to the number of nodes will always have cycles.

192

CHAPTER 19. CYCLE DETECTION 193

19.1.1 Implementation

We first mark every node as unvisited. We start at each unvisited
node and we do a depth first search from that node. We mark each
node along the way as temporarily visited and if we encounter a
temporarily visited node, then we have a cycle. After temporarily
visiting the nodes, we mark them as visited. If we reach a visited
node again, then we stop since we already checked if that node
had a cycle.

public static boolean hasCycle(int[][] adjMatrix) {

int[] visited = new int[adjMatrix.length];

// Mark each node as unvisited.

for (int i = 0; i < adjMatrix.length; i++) {

visited[i] = 0;

}

// Check if current node leads to a cycle.

for (int i = 0; i < adjMatrix.length; i++) {

if (hasCycleAt(adjMatrix, i, visited)) {

return true;

}

}

return false;

}

public static boolean hasCycleAt(int[][] adjMatrix, int i,

int visited[]) {

// If node has been reached again from the starting

node, we have a cycle.

if (visited[i] == 1) {

return true;

}

// If node has been permanently visited, we know it was

already checked.

if(visited[i] == 2) {

return false;

}

CHAPTER 19. CYCLE DETECTION 194

// Mark node as temporarily visited.

visited[i] = 1;

// Iterate through neighbors of current node.

for (int j = 0; j < adjMatrix.length; i++) {

if (adjMatrix[i][j] > 0) {

// Recursively check is

if (hasCycleAt(adjMatrix, j, visited)) {

return true;

}

visited[j] = 0;

}

}

// Permanently mark node as visited.

visited[i] = 2;

return false;

}

Part VI

Searches

195

Chapter 20

Searches

Searches are used to find solutions to problems and there are many
ways to search for a solution. Here are some generic searches that
can be applied to many different problems.

20.1 Binary Search

Binary search is a type of search that is able to find an object
in a sorted list in O(log n). In binary search, we first start at
range and we keep trying to halve the problem until the range is
narrowed down to a solution.

196

CHAPTER 20. SEARCHES 197

20.1.1 Example

For example, suppose we have a game where I told you I had
a number from 1 to 100 and you would keep guessing a number.
Every time you guessed, I would tell you if my number was higher
or lower than your guess. We could use binary search to solve this
problem in the most efficient way.

If my number was 17:

• You guess: 50

• I say lower.

So we know that: 1 <= number < 50. Since the number is less
than 50, then we know we can eliminate all the numbers above
50. We just made the problem half as hard! The reason we picked
50 is important because it is the middle and it tells us the most
information. If we picked 80 and the reply was higher it would
narrow down the problem a lot, but if the reply was lower it
would barely reduce the problem. Picking the middle works best
because it tells us the most information if we get a ”lower” or
”higher” reply. So we should also guess the middle between 1 and
50.

• You guess: 25.

• I say lower.

So we know that 1 <= number < 25. Once again, we made the
problem half as hard. Note that at every step we will make the
problem half as hard. We need to pick the next middle number
which is either 12 or 13, but we are indifferent because it will still
tell us the most information (unless you get lucky).

• You guess 13.

• I say higher.

CHAPTER 20. SEARCHES 198

So we know that 13 < number < 25.

• You guess 19.

• I say lower.

So we know that 13 < number < 19.

• You guess 16.

• I say higher.

So we know that 16 < number < 19

• You guess 17.

• I say correct!

20.1.2 Generic Binary Search

This is a generic implementation of a binary search.

void binarySearch (int ans, int minVal, int maxVal) {

while(maxVal >= minVal) {

int mid = (minVal + maxVal) / 2;

if (mid == ans) {

return;

}

else if (mid < ans) {

minVal = mid + 1;

}

else if (mid > ans) {

maxVal = mid - 1;

}

}

}

CHAPTER 20. SEARCHES 199

20.1.3 Finding Number in Sorted Array

Suppose we have a sorted array and we want to find if a number
X is in the array. We can do this easily by looping through the
entire array and searching for the element we want. However, we
can do better with binary search.

Let’s say we start with the array [-6, -5, 1, 2, 5, 7, 10, 17, 23,
29] and we are looking for the element 2. We pick the middle
element in the array which is 7 and we compare it with 5. Since
2 < 7, and everything in the last half the array is greater than
7, then everything in the last half the array is greater than 2 and
there is no point searching there. Thus we have halved the work
we need to do. We can do the same thing by picking the middle
element of the first half [-6, -5, 1, 2, 5] which is 1. Since 2 >
1 and everything in the first half is less than 1, then everything
in the first quarter is less than 1 and there is no point searching
there. Thus the element 2 we are looking for should be in the 2nd
quarter of the array [2, 5] which it is and we can return that it is
found.

public static boolean exists(int[] arr, int x) {

int start = 0;

int end = arr.length - 1;

while (end >= start) {

int middle = (start + end) / 2;

if (arr[middle] == x) {

return true;

}

else if (arr[middle] < x) {

start = middle + 1;

}

else if (arr[middle] > x) {

end = middle - 1;

}

}

return false;

CHAPTER 20. SEARCHES 200

}

20.1.4 Exercises

1. Given a sorted array, find the number of elements between
the number A and number B inclusive. Example: 1, 2, 4, 6,
8, 10, 16, 20. Given A=5 and B=15, the number of elements
between A and B is 3 (6, 8, 10).

2. Given two sorted arrays, find the number of duplicate ele-
ments.

3. Given two decimal numbers A and B, find A/B without
using the division operation or using decimals.

4. Write a square root function accurate to four decimal places
that uses binary search.

20.2 Ternary Search

Ternary search is a search that finds a local minimum or maximum
value in a function given an interval from A to B.

If there are multiple local minimum and maximum values, ternary
search will only find one of them but it will not necessarily be the
maximum or minimum.

CHAPTER 20. SEARCHES 201

20.2.1 Implementation

Suppose we have a function f(x) with only one max point between
A and B. We want to find the point (M, f(M)) where f(M) is the
maximum between A and B.

We split the range from A to B into three intervals. At every
iteration of our algorithm, we can narrow down the range by 1/3
and we have a new interval. At every step, we can remove one of
the intervals based on the following:

Let m1 by 1/3 of the way from A and B and let m2 be 2/3 of the
way from B.

CHAPTER 20. SEARCHES 202

Case 1 : f(m1) < f(m2)

• Case 1.1: m1 < m2 < M, so m1 < M

• Case 1.2: m1 < M < m2, so m1 < M

• Case 1.3: M < m1 < m2 is not possible.

Thus if f(m1) < f(m2), then m1 < M, so we only need to search
from m1 to B.

CHAPTER 20. SEARCHES 203

Case 2: f(m1) >= f(m2)

• Case 2.1: m1 < M < m2, so M < m2

• Case 2.2: M < m1 < m2, so M < m2

• Case 2.3: m1 < m2 < M is not possible

Thus, if f(m1) >= f(m2), then M < m2, so we only need to search
from A to m2.

CHAPTER 20. SEARCHES 204

Therefore, based on the values of f(m1) and f(m2), we can always
remove a third of the range. We can keep repeating this until the
range is within a very small threshold such as 0.0001.

Example

Example of ternary search:

Suppose we have a function f(x) with a maximum point between
A and B.

We find m1 (1/3) point and m2 (2/3) point between A and B.

CHAPTER 20. SEARCHES 205

Since f(m1) > f(m2), then we can reduce the range from A to m2.
We find the new m1 and m2 points.

Since f(m1) < f(m2), then we can reduce the range from m1 to B.
We find the new m1 and m2 points.

Since f(m1) < f(m2), then we can reduce the range from m1 to B.
We find the new m1 and m2 points.

CHAPTER 20. SEARCHES 206

Since f(m1) < f(m2), then we can reduce the range from m1 to B.
We find the new m1 and m2 points.

We keep repeating this until we narrow down the range to within
a small threshold and we can find the point where f(x) is maxi-
mum.

CHAPTER 20. SEARCHES 207

Formalization

Let f(x) be the function.

Let (a, b) be interval of search.

Let tern(a,b) return M where f(M) is the maximum.

Let m1 = a + (b - a) / 3

Let m2 = a + (b - a) * 2 / 3

tern(a,b) = (a + b) / 2 if |f(a) - f(b)| < epsilon

tern(a,b) = tern(m1, b) if f(a) < f(b)

tern(a,b) = tern(a, m2) otherwise

Code

public double tern(double a,double b){

if (Math.abs(f(a) - f(b)) < 0.0001) {

return (a + b) / 2.0;

}

double m1 = a + (b - a) / 3.0;

double m2 = a + (b - a) * 2.0 / 3.0;

if (f(m1) < f(m2)) {

return tern(m1, b);

} else {

CHAPTER 20. SEARCHES 208

return tern(a, m2);

}

}

20.3 Depth First Search

Prerequisites: Recursion, Stack

A depth first search (DFS) is a search that goes as far as possi-
ble before backtracking. The search requires a stack but DFS is
usually implemented with recursion which uses the system stack.
So most of the time you do not need an explicit stack.

1. Push the root into the stack.

2. Pop the first element from the stack and push all of its non-
visited neighbours to the stack.

3. Repeat until the stack is empty.

CHAPTER 20. SEARCHES 209

20.3.1 Implementation

Most of the time, DFS is implemented using recursion and it is
very short and simple to code.

public class Tree {

int value;

Tree left;

Tree right;

}

Binary Tree Traversal

Implementation for outputting a binary tree in order from left to
right using DFS:

public static void DFS(Tree cur) {

if (cur == null) {

return;

}

DFS(cur.left);

System.out.println(cur.value);

CHAPTER 20. SEARCHES 210

DFS(cur.right);

}

Binary Tree Preorder

Implementation for outputting a binary tree in DFS pre order:

public static void DFS(Tree cur) {

if (cur == null) {

return;

}

System.out.println(cur.value);

DFS(cur.left);

DFS(cur.right);

}

CHAPTER 20. SEARCHES 211

Binary Tree Postorder

Implementation for outputting a binary tree in DFS postorder:

public static void DFS(Tree cur) {

if (cur == null) {

return;

}

DFS(cur.left);

DFS(cur.right);

System.out.println(cur.value);

}

Graph Traversal

This is a DFS implementation for traversing a bidirectional graph
with positive weights:

public static void DFS_graph(int[][] adjMatrix, int cur,

boolean[] visited) {

if (visited[cur]) {

return;

CHAPTER 20. SEARCHES 212

}

visited[cur] = true;

System.out.println(cur);

for (int i = 0; i < adjMatrix.length; i++) {

if (adjMatrix[cur][i] > 0) {

DFS_graph(adjMatrix, i, visited);

}

}

return;

}

20.3.2 Exercises

1. Given a binary tree, find the its height (the longest path
from the root to a leaf)

2. Given a graph and two nodes X and Y, determine if a path
exists between X and Y.

3. Given a node and a binary tree, find the next node in post
order, pre order and normal order.

20.4 Breadth First Search

Prerequisites: Recursion, Queue

A breadth first search is a search that traverses level by level. For
example, in a tree, the search will transverse everything from the
first layer, to the second layer, the third layer and all the way
down to the last layer. BFS is implemented with a queue.

1. Push the root into the queue.

2. Pop the first element from the queue and push its non-
visited neighbours.

CHAPTER 20. SEARCHES 213

3. Repeat 2 until the queue is empty.

20.4.1 Implementation

Printing a binary tree using BFS:

void bfs(Node root) {

Queue<Node> q = new Queue<Node>();

q.push(root);

while (q.isEmpty() == false) {

Node cur = q.pop();

System.out.println(cur.value);

if (cur.left) {

q.push(cur.left);

}

if (cur.right) {

q.push(cur.right);

}

}

}

CHAPTER 20. SEARCHES 214

20.4.2 Exercises

1. Given a grid of squares with walls at certain locations and
two locations A and B, find the minimum distance (go-
ing up/left/right/down) between the locations or impossible
otherwise. For example if A is at (1,1) and B is at (3,1) but
there is a wall at (2,1) then the minimum distance would
be 4 (down, left, left, up).

2. Given a tree of letters (A is the root), output the tree using
BFS with separators between levels:

• Example: A→B, B→D,B→C, C->G will output A —
B — C D — G.

3. Given a tree of letters, and two letters X and Y determine
if X is an ancestor of Y or if Y is a ancestor of X or neither.
X is an ancestor of Y if X’s subtrees contain Y.

• Example: A→B, B→C, B→D, D→G, A is a parent of
both C and D but G and C are not ancestors of each
other

4. Given a binary tree and a node in the binary tree, find the
next node in BFS order of the tree.

20.5 Flood Fill

Prerequisites: Depth First Search, Breadth First Search

Flood fill is a search that starts at a point and finds the areas
connected to the start point. For example, the ”bucket fill” in
Photoshop or MS Paint uses flood fill to fill in the connecting
areas of the same colour.

Flood fill can be implemented using a BFS or DFS.

CHAPTER 20. SEARCHES 215

The above grid shows how flood fill works. The number in each
cell represents the number of steps from the starting cell and the
black cells are blocked off. We start at the cell marked as 0 and
we reach all adjacent cells.

20.5.1 Bucket Fill

Given an N x M matrix and a start point and two colors (src
and dst), we want to replace all the cells in the matrix that are
connected to the start point with the color src and change to color
dst as well as output the number of cells changed.

Example:

We start with a bitmap image:

CHAPTER 20. SEARCHES 216

We use bucket fill in the top left corner of the bitmap to fill
everything with the same color as the cell.

CHAPTER 20. SEARCHES 217

A numeric representation of the bitmap before bucket fill:

CHAPTER 20. SEARCHES 218

Numeric representation of the bitmap after bucket fill in the
left:

DFS Solution

This is the DFS approach to the problem.

• Assume that n,m are global integers that are the width and
height of the image

• Assume that image is a global integer n by m matrix for the
image

• Assume that visited is a global boolean n by m matrix that
is initially all false

public int FloodFillDFS(int x, int y, int src, int tar) {

if (x < 0 || x >= n || y < 0 || y >= m) {

return 0;

}

CHAPTER 20. SEARCHES 219

if (visited[x][y]) {

return 0;

}

visited[x][y] = true;

if (image[x][y] != src) {

return 0;

}

image[x][y] = tar;

int sum = 0;

sum += FloodFillDFS(x + 1, y, src, tar);

sum += FloodFillDFS(x - 1, y, src, tar);

sum += FloodFillDFS(x, y + 1, src, tar);

sum += FloodFillDFS(x, y - 1, src, tar);

return sum;

}

BFS Solution

This is the BFS approach to the problem.

• Assume that n,m are global integers that are the width and
height of the image

• Assume that image is a global integer n by m matrix for the
image

• Assume that visited is a global boolean n by m matrix that
is initially all false

public int FloodFillBFS(int x, int y, int src, int tar) {

LinkedList<Point> q = new LinkedList<Point>();

q.push(new Point(x, y));

int total = 0;

while (q.isEmpty() == false) {

Point cur = q.pop();

if (cur.x < 0 || cur.x >= n || cur.y < 0 || cur.y >=

m) {

CHAPTER 20. SEARCHES 220

continue;

}

if (visited[cur.x][cur.y]) {

continue;

}

visited[cur.x][cur.y] = true;

if (image[cur.x][cur.y] != src) {

continue;

}

image[cur.x][cur.y] = tar;

total++;

q.push(new Point(cur.x + 1, cur.y));

q.push(new Point(cur.x - 1, cur.y));

q.push(new Point(cur.x, cur.y + 1));

q.push(new Point(cur.x, cur.y - 1));

}

return total;

}

20.5.2 Exercises

1. Given a NxN grid and a list of starting cells and wall cells,
find the distance to the closest start point for every non-wall
grid space without passing through a wall.

2. Given a grid of numbers where 0 means empty space and 1
means a wall, find the number of rooms and the perimeter
of each room. The border of the grid is guaranteed to be
walls.

1 1 1 1 1 1

1 0 0 0 1 1

1 1 0 1 1 1

1 1 0 1 0 1

1 1 1 1 1 1

CHAPTER 20. SEARCHES 221

The number of rooms is 2, the perimeter of the first room is 12
and the perimeter of the second room is 4.

20.6 Backtracking

Backtracking is a search that find all possible solutions by enu-
merating on partial solutions. Backtracking can be done using
DFS or BFS. Generally, DFS will be better than BFS because
backtracking is used to enumerate many, many solutions. Since
BFS requires storing each ”level” of solutions and DFS requires
storing each ”height” of the solution, DFS will have a smaller
memory footprint. In most backtracking problems, the ”levels”
of the solutions will be very large but the ”height” will be small.
Thus, DFS will be the preferred solution for most backtracking
problems.

Backtracking is similar to recursion, but instead of generating all
the solutions, we will generate each solution one by one. When
backtracking, we only need to store the current solution in mem-
ory, whereas with normal recursion we need to store all the solu-
tions into memory.

Since backtracking requires enumerating through all solutions, it
is usually slow with runtimes such as O(n!) or O(2n).

CHAPTER 20. SEARCHES 222

20.6.1 General Solution

Base case:

When a solution has been generated

Reject:

Check if partial solution needs to be rejected

Recurrence:

Generate next partial solution thats growing to full

solution

backtrack(solution):

if reject(solution)

stop

if base case

stop

backtrack(next_solution) for next_solution

Initial:

backtrack(empty_solution)

CHAPTER 20. SEARCHES 223

20.6.2 List all sets

Given a set of numbers S of length N, output all subsets of
S.

For example S=(1,2,3,4). The subsets of (1,2,3,4):

• ()

• (1), (2), (3), (4)

• (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

• (1,2,3), (1,2,4), (1,3,4), (2,3,4)

• (1,2,3,4)

We want to be able to enumerate all the subsets of S so we need
to find a way to encode a subset of an array. We can use a binary
number of length N to encode a subset of an array of length N. A
one at position x will indicate that the xth number is in the set.
For example, 1001 means the first and fourth is in the set so we
have (1,4).

So above:

• () = 0000

• (1) = 1000

• (2) = 0100

• (3) = 0010

• (4) = 0001

• (1,2) = 1100

• (1,3) = 1010

• (1,4) = 1001

• (2,3) = 0110

CHAPTER 20. SEARCHES 224

• (2,4) = 0101

• (3,4) = 0011

• (1,2,3) = 1110

• (1,2,4) = 1101

• (1,3,4) = 1011

• (2,3,4) = 0111

• (1,2,3,4) = 1111

At each position, we either use or don’t use the number in the
set. We can enumerate through all possible encodings by starting
with 0 or 1 and appending more 0’s or 1’s.

Recursive Method

Here is how we would solve this problem with recursion:

Start with []

Add 1 and 0 to the right of each binary number in the array

Repeat until N

[0,1]

[00, 01, 10, 11]

[000, 001, 010, 011, 100, 101, 110, 111]

[0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000,

1001, 1010, 1011, 1100, 1101, 1110, 1111]

Let S be an array of N integers

Let subsets(set, n) return an array of subsets of S from 1

to n

Base case

subsets(set, 0) = set

Recurrence

subsets(set,n) = subsets([sub+0 for sub in set] + [sub+1

for sub in set], n)

CHAPTER 20. SEARCHES 225

Example:

subsets([],4)

subsets([0, 1], 3)

subsets([00, 01, 10, 11], 2)

subsets([000, 001, 010, 011, 100, 101, 110, 111], 1)

subsets([0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111,

1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111], 0)

=

[0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000,

1001, 1010, 1011, 1100, 1101, 1110, 1111]

However recursion uses a lot of memory to store all the solutions.
Instead of building all the solutions, we can build each solution
one by one and only store one solution at a time.

Formalization

Base case:

subset(0, binary):

print binary

Recurrence:

CHAPTER 20. SEARCHES 226

subset(n - 1, binary + ’0’)

subset(n - 1, binary + ’1’)

Example:

subset(4,’’)

subset(3,’0’)

subset(3,’1’)

subset(2,’00’)

subset(2,’01’)

subset(2,’10’)

subset(2,’11’)

subset(1,’000’)

subset(1,’001’)

subset(1,’010’)

subset(1,’011’)

subset(1,’100’)

subset(1,’101’)

subset(1,’110’)

subset(1,’111’)

subset(0,’0000’)

subset(0,’0001’)

subset(0,’0010’)

subset(0,’0011’)

subset(0,’0100’)

subset(0,’0101’)

subset(0,’0110’)

subset(0,’0111’)

subset(0,’1000’)

subset(0,’1001’)

subset(0,’1010’)

subset(0,’1011’)

subset(0,’1100’)

subset(0,’1101’)

subset(0,’1110’)

subset(0,’1111’)

CHAPTER 20. SEARCHES 227

Implementation

We can implement backtracking with recursion, but we pass in
the same array instead of creating new ones. We only store one
set at a time in the use[] array.

void subsets(int arr[], boolean use[], int i) {

int n = arr.length;

if (i >= n) {

for (int j = 0; j < n; j++) {

System.out.print(arr[i]);

}

System.out.println();

return;

}

use[i] = false;

subsets(arr, use, i + 1);

use[i] = true;

subsets(arr, use, i + 1);

}

// Example usage:

subsets([1, 2, 3, 4], [false, false, false], 0);

20.6.3 N Queen Problem

Find the number of ways to place N queens on a NxN board
without any of them attacking each other. Queens can attack
anything along its row, column or diagonal.

CHAPTER 20. SEARCHES 228

First we need to be able to encode a solution. There must be
only one queen in each row, each column, each positive diagonal
and each negative diagonal. We need a way to encode each row,
column and diagonal to make it easy to check that they are all
unique.

CHAPTER 20. SEARCHES 229

If we guarantee that all rows are unique and we have all columns
filled, then we can guarantee that all the columns are unique as
well.

To encode a diagonal we can use a clever equation to represent
the diagonal. Notice that every positive diagonal has the same
value for row+col.

d1 = row+column

N=6:

CHAPTER 20. SEARCHES 230

Every square with the same d1 is in the same diagonal (/). For
example, on a 6x6 board: (0,2), (1,1), (2,0) all have d1 = 2 and
are all along the same diagonal.

We can also see that every negative diagonal has the same value
for (N-row)+column. The second diagonal can also be found using
the following equation:

d2 = (N-row-1)+column

N=6:

CHAPTER 20. SEARCHES 231

Everything with the same d2 will be on the same diagonal. For
example, on a 6x6 board, (0,0),(1,1),(2,2) have d2 = 5 and are all
along the same diagonal.

Now that we get can encode rows, columns, and diagonals, we
can use it to make checking solutions more easy. We can keep
sets that track with rows/columns/diagonals are currently filled
and check our solution to make sure we do not have anything in
the same row/column/diagonal.

We can place a queen in each row and make sure that each column
/ diagonals is unfilled.

Formalization

Let N be a NxN board where we want to place N queens

Let queen(n,columns,d1,d2) be a placing of N queens across

a board

CHAPTER 20. SEARCHES 232

Base case

queen(0, cols, d1, d2): print solution

Reject solution

reject(cols, d1, d2) = false if duplicates in cols or d1

or d2

reject(cols, d1, d2) = true otherwise

Recurrence

queen(row,cols,d1,d2) = queen(row-1,cols with col,d1 with

row+col,d2 with N-row+col) for col from 1 to N

Examples

N=4

queen(4,[],[],[])

queen(3,[0],[3],[6])

queen(3,[1],[4],[5])

queen(3,[2],[5],[4])

queen(3,[3],[6],[3])

queen(2,[0,0],[3,2],[6,5]) x-- reject

queen(2,[0,1],[3,3],[6,4]) x-- reject

queen(2,[0,2],[3,4],[6,3])

queen(2,[0,3],[3,5],[6,2])

queen(2,[1,0],[4,2],[5,5]) x-- reject

queen(2,[1,1],[4,3],[5,4]) x-- reject

queen(2,[1,2],[4,4],[5,3]) x-- reject

queen(2,[1,3],[4,5],[5,2])

queen(2,[2,0],[5,2],[4,5])

queen(2,[2,1],[5,3],[4,4]) x-- reject

queen(2,[2,2],[5,4],[4,3]) x-- reject

queen(2,[2,3],[5,5],[4,2]) x-- reject

queen(2,[3,0],[6,2],[3,5])

queen(2,[3,1],[6,3],[3,4])

queen(2,[3,2],[6,4],[3,3]) x-- reject

queen(2,[3,3],[6,5],[3,2]) x-- reject

queen(1,[0,2,0],[3,4,1],[6,3,4]) x-- reject

CHAPTER 20. SEARCHES 233

queen(1,[0,2,1],[3,4,2],[6,3,3]) x-- reject

queen(1,[0,2,2],[3,4,3],[6,3,2]) x-- reject

queen(1,[0,2,3],[3,4,4],[6,3,1]) x-- reject

queen(1,[0,3,0],[3,5,1],[6,2,4]) x-- reject

queen(1,[0,3,1],[3,5,2],[6,2,3])

queen(1,[0,3,2],[3,5,3],[6,2,2]) x-- reject

queen(1,[0,3,3],[3,5,4],[6,2,1]) x-- reject

queen(1,[1,3,0],[4,5,1],[5,2,4])

queen(1,[1,3,1],[4,5,2],[5,2,3]) x-- reject

queen(1,[1,3,2],[4,5,3],[5,2,2]) x-- reject

queen(1,[1,3,3],[4,5,4],[5,2,1]) x-- reject

queen(1,[2,0,0],[5,2,1],[4,5,4]) x-- reject

queen(1,[2,0,1],[5,2,2],[4,5,3]) x-- reject

queen(1,[2,0,2],[5,2,3],[4,5,2]) x-- reject

queen(1,[2,0,3],[5,2,4],[4,5,1])

queen(1,[3,0,0],[6,2,1],[3,5,4]) x-- reject

queen(1,[3,0,1],[6,2,2],[3,5,3]) x-- reject

queen(1,[3,0,2],[6,2,3],[3,5,2])

queen(1,[3,0,3],[6,2,4],[3,5,1]) x-- reject

queen(1,[3,1,0],[6,3,1],[3,4,4]) x-- reject

queen(1,[3,1,1],[6,3,2],[3,4,3]) x-- reject

queen(1,[3,1,2],[6,3,3],[3,4,2]) x-- reject

queen(1,[3,1,3],[6,3,4],[3,4,1]) x-- reject

queen(0,[0,3,1,0],[3,5,2,0],[6,2,3,3]) x-- reject

queen(0,[0,3,1,1],[3,5,2,1],[6,2,3,2]) x-- reject

queen(0,[0,3,1,2],[3,5,2,2],[6,2,3,1]) x-- reject

queen(0,[0,3,1,3],[3,5,2,3],[6,2,3,0]) x-- reject

queen(0,[1,3,0,0],[4,5,1,0],[5,2,4,3]) x-- reject

queen(0,[1,3,0,1],[4,5,1,1],[5,2,4,2]) x-- reject

queen(0,[1,3,0,2],[4,5,1,2],[5,2,4,1]) SOLUTION

queen(0,[1,3,0,3],[4,5,1,3],[5,2,4,0]) x-- reject

queen(0,[2,0,3,0],[5,2,4,0],[4,5,1,3]) x-- reject

queen(0,[2,0,3,1],[5,2,4,1],[4,5,1,2]) SOLUTION

queen(0,[2,0,3,2],[5,2,4,2],[4,5,1,1]) x-- reject

queen(0,[2,0,3,3],[5,2,4,3],[4,5,1,0]) x-- reject

queen(0,[3,0,2,0],[6,2,3,0],[3,5,2,3]) x-- reject

queen(0,[3,0,2,1],[6,2,3,1],[3,5,2,2]) x-- reject

queen(0,[3,0,2,2],[6,2,3,2],[3,5,2,1]) x-- reject

CHAPTER 20. SEARCHES 234

queen(0,[3,0,2,3],[6,2,3,3],[3,5,2,0]) x-- reject

Implementation

Here is a Java implementation of counting the number of ways to
place 8 queens on board.

public int nqueen(int col, boolean row[], boolean d1[],

boolean d2[]) {

int n = row.length;

// Base case if 8 queens are placed.

if (col >= n) {

return 1;

}

int sum = 0;

for (int r = 0; r < n; r++) {

// Check queen coordinates are valid.

if (!row[r] && !d1[r + col] && !d2[n - 1 - r + col]) {

// Mark rows and diagonals as filled.

row[r] = true;

d1[r + col] = true;

d2[n - 1 - r + col] = true;

// Backtrack positions.

sum += nqueen(col + 1, row, d1, d2);

// Clear rows and diagonals.

row[r] = false;

d1[r + col] = false;

d2[n - 1 - r + col] = false;

}

}

return sum;

}

int n = 8;

boolean[] row = new boolean[n];

CHAPTER 20. SEARCHES 235

boolean[] d1 = new boolean[2*n];

boolean[] d2 = new boolean[2*n];

for (int i = 0; i < n; i++) {

row[i] = false;

d1[i] = d2[i] = false;

}

nqueen(0, row, d1, d2);

20.6.4 Exercises

1. Given a sequence of numbers, output all increasing subse-
quences.

2. Given a NxN chessboard with certain squares that can have
no pieces placed, output the number of configurations that
can be made from rooks without attacking each other.

3. Given a sudoku problem, output a solution for the grid if
it exists. Note: this question is popular for technical inter-
views.

4. Given a NxN magic square where you need to place the
numbers from 1 to N2, find the number of ways to have
every row, column and diagonal add to M.

Part VII

Dynamic Programming

236

Chapter 21

Dynamic
Programming

21.1 Dynamic Programming

Prerequisites: Advanced Recursion

Next: Advanced Dynamic Programming

Dynamic programming uses memoization by solving subproblems
to solve the more complex problem. Dynamic programming uses
recursion but instead of working backwards, it builds up the an-
swer and reduces the number of duplicate computations.

Like recursion, dynamic programming requires two things:

• A base case and

• A subproblem that can be reduced into smaller subproblems

To find a dynamic programming solution to a problem, first start
with a recursive solution and then use memoizations to optimize
for duplicate calculations.

237

CHAPTER 21. DYNAMIC PROGRAMMING 238

21.1.1 Fibonacci Sequence

The Fibonacci sequence is determined by fib(n) = fib(n-1) + fib(n-
2) where fib(0) = 1 and fib(1) = 1.

If we calculate fib(5) we have:

fib(5)

= fib(4) + fib(3)

= fib(3) + fib(2) + fib(2) + fib(1)

= fib(2) + fib(1) + fib(1) + fib(0) + fib(1) + fib(0) +

fib(1)

= fib(1) + fib(0) + fib(1) + fib(1) + fib(0) + fib(1) +

fib(0) + fib(1)

= 1 + 1 + 1 + 1 + 1 + 1 + 1

= 8

However we are computing multiple values more than once. When
we compute fib(5) we need to compute fib(4) and fib(3) but fib(3)
is already computed when we compute fib(4) and thus we have to
recompute it again. We can avoid this redundancy by ”building
up”. We can calculate fib(2), then fib(3) then fib(4) and finally
fib(5) and we won’t have duplicate calculations.

fib(0) = 1

fib(1) = 1

fib(2) = fib(1) + fib(0) = 2

fib(3) = fib(2) + fib(1) = 3

fib(4) = fib(3) + fib(2) = 5

fib(5) = fib(4) + fib(3) = 8

Formalization

Formalization using recursion:

Let fib(n) be the nth Fibonacci number

CHAPTER 21. DYNAMIC PROGRAMMING 239

Base case:

fib(0) = 1, fib(1) = 1

Subproblem:

fib(n) = fib(n - 1) + fib(n - 2)

Example:

fib(5)

= fib(4) + fib(3)

= fib(3) + fib(2) + fib(2) + fib(1)

= fib(2) + fib(1) + fib(1) + fib(0) + fib(1) + fib(0) +

fib(1)

= fib(1) + fib(0) + fib(1) + fib(1) + fib(0) + fib(1) +

fib(0) + fib(1)

= 1 + 1 + 1 + 1 + 1 + 1 + 1

= 8

Formalization for dynamic programming: We only need O(1)
memory for Fibonacci, but for this example, we will use an ar-
ray.

Let fib[n] be the nth Fibonacci number

Base case

fib[0] = 1

fib[1] = 1

for x from 2 to N

fib[x] = fib[x - 1] + fib[x - 2]

Example:

N = 10

fib[0] = 1

fib[1] = 1

fib[2] = 2

fib[3] = 3

fib[4] = 5

CHAPTER 21. DYNAMIC PROGRAMMING 240

fib[5] = 8

fib[6] = 13

fib[7] = 21

fib[8] = 34

fib[9] = 55

fib[10] = 89

Implementation

Implementation for recursion:

public int fib(int n) {

if (n == 0 || n == 1) {

return 1;

}

return fib(n - 1) + fib(n - 2);

}

Implementation for dynamic programming:

public int fib(int n) {

int fibArr[] = new int[n+1];

fibArr[0] = 1;

fibArr[1] = 1;

for (int x = 2; x <= n; x++) {

fibArr[x] = fibArr[x - 1] + fibArr[x - 2];

}

return fibArr[n];

}

21.1.2 Coin Problem

Let’s say that you wanted to make change for $51 using the small-
est amount of bills ($1, $2, $5, $10, $20). We can use a greedy
approach by always taking the highest bill that can be subtracted

CHAPTER 21. DYNAMIC PROGRAMMING 241

to find the smallest amount of change. 51 - 20 = 31 - 20 = 11 -
10 = 1. So the smallest amount of change would be comprised of
2 x $20 + 1 x $10 + 1 x $! for a total of 5 bills. This solution
seems very easy to implement, but what if the bills were not so
nice?

Imagine that an alien currency with denominations of $3, $5, $7
and $11. What would be the smallest amount of bills to make
change for $13? Note that a greedy approach does not work for
this alien currency. For example: 13 - 11 = 2. It is impossible to
make change using the greedy approach. Note that we can make
change with 2 x $5 + 1 x $3 = $13.

Let’s define the problem more formally: Given a list of bills each
with a positive denominations, find the lowest amount of bills
required to make C dollars or return impossible if it cannot be
done.

The base case for 0 dollars is very simple. There are 0 bills to
make 0 dollars.

Lets try to simply this problem. Assume we only have one bill
worth d dollars. If we have C dollars and we want to use the
bill, then we will have C-d dollars left. So the minimum bills to
make C dollars is the minimum number of bills to make (C - d)
bills plus the 1 for the bill we used. For example, we want to
make 10 dollars and we only have 2 dollar bills. If we use a 2
dollar bill, then the minimum bills required to make 10 dollars
is the minimum number of bills required to make 8 dollars plus
that 2 dollar bill. Finding the minimum number of bills required
to make 8 dollars, is the same problem as finding the minimum
number of bills required to make 10 dollars. Thus we are solving
a reduced version of the same problem and this is our recurrence
relation.

Formalization for recursion:

CHAPTER 21. DYNAMIC PROGRAMMING 242

Let d be the denomination

Let bills(C) be the minimum number of bills to make C

dollars.

Base Case:

bills(0) = 0

bills(C) = impossible if C < 0

Subproblem:

bills(C) = bills(C - d) + 1 if bills(C-d) is possible

bills(C) = impossible if bills(C-d) is impossible

Example:

C = 10

d = 2

bills(10)

= bills(8) + 1

= bills(6) + 1 + 1

= bills(4) + 1 + 1 + 1

= bills(2) + 1 + 1 + 1 + 1

= bills(0) + 1 + 1 + 1 + 1 + 1

= 5

We could implement this using dynamic programming, but it will
not give us much benefit since the recursion has no recalcula-
tions.

Formalization for dynamic programming:

bills[0] = 0

for c from 1 to C

if c-d >= 0 and bills[c-d] is not impossible

bills[c] = bills[c-d] + 1

else

bills[c] = impossible

CHAPTER 21. DYNAMIC PROGRAMMING 243

Example:

C = 10

d = 2

bills[0] = 0

bills[1] = impossible

bills[2] = 1

bills[3] = impossible

bills[4] = 2

bills[5] = impossible

bills[6] = 3

bills[7] = impossible

bills[8] = 4

bills[9] = impossible

bills[10] = 5

Now let’s consider the problem with multiple bills of denomina-
tions d1, d2 dn and we want to make C dollars. If we use a d1
bill, then we will have C-d1 dollars left and similarly if we use a d2
bill then we will have C-d2 dollars left. More generally, if we use
a dn bill, then we will have C-dn dollars left. If we want to find
the minimum bills to make C dollars we should try to use every
bill and see which requires the minimum number of bills. So the
minimum number of bills to make C dollars is the minimum of C
- dn dollars plus one more dn bill for all denominations. However,
finding the minimum number of bills to make C-dn dollars is the
same problem as finding the number of C dollars! Thus we found
the subproblem and a recursive formula.

For example, if we have $7 and we have bills $3, $4, and $5, the
minimum number of bills to make $7 is the minimum of the min-
imum number of bills to make $4 plus one more $3 bill, minimum
number of bills to make $3 plus one more $4 or the minimum
number of bills to make $2 plus one more $5 bill.

Formalization for recursion:

CHAPTER 21. DYNAMIC PROGRAMMING 244

Let denom[] be a list of denominations

Let bills(C) be the minimum number of bills to make C

dollars from denominations denom[]

Base Cases:

bills(C) = impossible if C <= 0

Subproblem

bill(C) = minimum of bills(C - d)+1 for d in denom

bill(C) = impossible if bills(C - d) = impossible for all

d in denom

Example:

denom = [3,4,5]

bill(7)

= min(bill(4) + 1, bill(3) + 1, bill(2) + 1))

= min(min(bill(1) + 1,

bill(0) + 1,

bill(-1) + 1) + 1,

min(bill(0) + 1,

bill(-1) + 1,

bill(-2) + 1) + 1,

min(bill(-1) + 1),

bill(-2) + 1,

bill(-3) + 1) + 1)

= min(min(impossible, 1, impossible) +1,

min(1, impossible, impossible) +1,

min(impossible, impossible, impossible) + 1)

= min(2,2,impossible)

= 2

However, note that we are recomputing partial solutions. For
example, we are recomputing bill(0) multiple times and bill(-1)
multiple times. Instead, if we built up the solution from bill(0), we
could find bill(C) more efficiently. We can do this by computing
bill(c) as c goes from 0 to C. E.g. we compute bill(0) then bill(1)
then bill(2) until bill(C).

CHAPTER 21. DYNAMIC PROGRAMMING 245

Putting it all together:

Let denom[] be an array of denominations

Let bills[C] be the smallest amount of bills to make the

amount C using denominations denom[], or impossible if

it is not possible

Base case:

bills[0] = 0

Subproblem:

for c from 1 to C

bills[c] = impossible

for d in denom

if c-d >= 0 and bills[c-d] is not impossible:

bills[c] = min(bills[c], bills[c-d]+1)

Example:

denom = [3,4,5]

C = 7

bills[0] = 0

bills[1] = impossible (bills[-2],bills[-3],bills[-4])

bills[2] = impossible

bills[3] = 1 (bills[0]+1)

bills[4] = 1 (bills[0]+1)

bills[5] = 1 (bills[0]+1)

bills[6] = 2 (bills[3]+1)

bills[7] = 2 (bills[3]+1 or bills[4]+1)

CHAPTER 21. DYNAMIC PROGRAMMING 246

21.1.3 Number of Paths

We first examined the number of paths problem in advanced re-
cursion. However, now that we know how to use dynamic pro-
gramming, we can see that the recursive solution was very ineffi-
cient because we were recomputing values many times.

Let path(x,y) be the number of ways to get to the cell at

x and y

Base case:

paths(1,y) = 1

paths(x,1) = 1

Recurrence:

paths(x,y) = paths(x-1,y) + paths(x,y-1)

Example:

paths(3,5)

= paths(2,5) + paths(3,4)

= paths(1,5) + paths(2,4) + paths(2,4) + paths(3,3)

= 1 + paths(1,4) + paths(2,3) + paths(1,4) + paths(2,3) +

paths(2,3) + paths(3,2)

= 1 + 1 + paths(1,3) + paths(2,2) + 1 + paths(1,3) +

paths(2,2) + paths(1,3) + paths(2,2) + paths(2,2) +

paths(3,1)

CHAPTER 21. DYNAMIC PROGRAMMING 247

= 1 + 1 + 1 + paths(1,2) + paths(2,1) + 1 + 1 + path(1,2)

+ paths(2,1) + 1 + paths(1,2) + paths(2,1) +

= 15

Instead of recomputing multiple values, we can build our solution
upwards starting from (1,1).

Let paths[x][y] be the number of ways to get from (1,1) to

(x,y).

paths[1][1] = 1

for x from 1 to N

for y from 1 to M

paths[x][y] = paths[x-1][y] + paths[x][y-1]

Example:

N = 3

M = 5

1 1 1 1 1

1 2 3 4 5

1 3 6 10 15

21.1.4 Knapsack Problem

Imagine you are a robber and you have found a large stash of
valuables. Each valuable has a value and a weight. You can only
hold 10kg in your bag and you want to find the highest valued
haul you can get away with.

• Necklace: $10, 1kg

• Stack of cash: $270, 3kg

• Jewelry: $665, 7kg

CHAPTER 21. DYNAMIC PROGRAMMING 248

• Rare painting: $900, 9kg

Let’s try a greedy approach: we will take the items with the
highest value to weight ratio.

• Necklace: $10/kg

• Stack of cash: $90/kg

• Jewelry: $95/kg

• Rare painting: $100/kg

The greedy approach will choose the rare painting and the neck-
lace for a total of $910. However, if we take the jewelry and the
stack of cash, we will get $935 and it will still fit it into the bag.
We solve this problem with dynamic programming.

Let’s first write a more formal definition of the problem:

Given unlimited quantities of N items, each associated with a
positive weight and value, and a maximum total weight W that
we can hold, what is the maximum value we can hold?

Let’s write a more specific version of the problem: we want to
find the maximum value that a bag with weight capacity W can
carry out of N items of positive values and weights.

The base case for this is trivial. With zero weight, the maximum
value you can have is 0.

Let’s try simplifying the problem by using only one item with
weight w1 and value v1 and a knapsack with maximum weight
capacity W. Suppose we want to add the item into the knapsack
then we have (W-w1) capacity remaining and the item. So the
maximum value of knapsack with capacity W is the maximum
value of (W-w1) plus v1 the value of the item we have. The
maximum value of (W-w1) is the same problem as finding the
maximum value of W. As we can see, its the same subproblem as
before and we have found a recursive relation.

CHAPTER 21. DYNAMIC PROGRAMMING 249

For example, if we had an item with value $5 and weight 4kg
and a knapsack with capacity 9kg. The maximum value that a
knapsack of 8kg can contain is the maximum value of a knapsack
of 5kg plus $5 for the item we put in the bag and so forth.

Let knapsack(W) be the maximum value of items that can fit

into maximum capacity of W.

Let item be an item with a weight and value.

Base Case:

knapsack(W) = 0 if W < w1

Recursion:

knapsack(W) = impossible if knapsack(W - item.weight) is

impossible

knapsack(W) = knapsack(W - item.weight) + item.value

Example:

item.value = 5

item.weight = 4

knapsack(9)

= knapsack(5) + 5

= knapsack(1) + 5 + 5

= 10

Note that we are recomputing multiple values multiple times. We
can avoid this by using dynamic programming and working up
with our solution instead of backwards.

Let knapsack[W] be the maximum value with weight capacity

W.

Let item be an item with a positive weight and value.

for i from 0 to w - 1

knapsack[i] = 0

for weight from 1 to W

CHAPTER 21. DYNAMIC PROGRAMMING 250

knapsack[weight] = knapsack[weight - item.weight] +

item.value

Example:

W = 9

item.weight = 4

item.value = 5

knapsack[0] = 0 base case

knapsack[1] = 0 base case

knapsack[2] = 0 base case

knapsack[3] = 0 base case

knapsack[4] = 5 (knapsack[0] + 5)

knapsack[5] = 5 ^

knapsack[6] = 5 ^

knapsack[7] = 5 ^

knapsack[8] = 10 (knapsack[4] + 5)

knapsack[9] = 10 ^

Now let’s go back to the original problem. We have N items each
of positive weight and value and we want to find the maximum
value to be put into a knapsack of capacity W.

If no items left fit in our remaining capacity, then the maximum
value must be $0. This is our base case.

If we use an item, we will have capacity W-wi and the added value
will be vi. We want to try all items to place into the knapsack
so we try every single item and find the maximum value out of
the items. So the maximum value of capacity W is the maximum
value of W-wi plus the added value of vi for all items. To find the
maximum value of capacity W-wi we can do the exact same thing
by trying to place each item and finding the maximum value out
of the items.

Using the initial example, if we have a knapsack of capacity 10kg
and the following items:

CHAPTER 21. DYNAMIC PROGRAMMING 251

• Necklace: $10, 1kg

• Stack of cash: $270, 3kg

• Jewelry: $665, 7kg

• Rare painting: $900, 9kg

If we choose a necklace, we will have 7kg capacity left with the
added value of $10. If we choose a painting, we will have 1kg
capacity left and added value of $900. If we choose jewelry, we
will have 3kg capacity left and added value of $665. With the
remaining capacity, we can choose another item and do the exact
same thing.

Formalization

Let knapsack(W) be the maximum value with maximum capacity

W

Let items[] be an array of items with positive weights and

values.

knapsack(W) = 0 if W < 0

knapsack(W) = maximum of knapsack(W - item.weight) +

item.value for all items

Since we could be recomputing knapsack(w) multiple times, we
can optimize by working forwards using dynamic programming.

Let knapsack[w] be the maximum value with maximum capacity

W.

Let items be an array of items with positive weights and

values.

knapsack[0] = 0

for w from 1 to W

CHAPTER 21. DYNAMIC PROGRAMMING 252

maxVal = 0

for item in items

if w - item.weight >= 0

knapsack[w] = max(knapsack[w], knapsack[w -

item.weight] + item.value)

Example:

Items = [(1kg, \$10), (3kg, \$270), (7kg, \$665), (9kg,

\$900)]

knapsack[0] = 0

knapsack[1] = 10 [max(knapsack[0] + 10)]

knapsack[2] = 10 [max(knapsack[1] + 10)]

knapsack[3] = 270 [max(knapsack[2] + 10, knapsack[0] +

270)]

knapsack[4] = 280 [max(knapsack[3] + 10, knapsack[1] +

270)]

knapsack[5] = 290 [max(knapsack[4] + 10, knapsack[2] +

270)]

knapsack[6] = 300 [max(knapsack[5] + 10, knapsack[3] +

270)]

knapsack[7] = 665 [max(knapsack[6] + 10, knapsack[4] +

270, knapsack[0] + 665)]

knapsack[8] = 675 [max(knapsack[7] + 10, knapsack[5] +

270, knapsack[1] + 665)]

knapsack[9] = 900 [max(knapsack[8] + 10, knapsack[6] +

270, knapsack[2] + 665, knapsack[0] + 900)]

knapsack[10] = 935 [max(knapsack[9] + 10, knapsack[7] +

270, knapsack[7] + 665, knapsack[1] + 900)]

21.1.5 Exercises

1. Given an array of N integers, find the largest sum that can
be found using consecutive integers.

2. Given an array of N integers, find the length of the longest
increasing subsequence. For example, given [1, -5, 4, 5, 10,
-1, -5, 7], the longest increasing subsequence is length 4

CHAPTER 21. DYNAMIC PROGRAMMING 253

[1,4,5,10].

3. Given a matrix of NxN integers, find the maximum sum of
a submatrix.

21.2 Advanced Dynamic Programming

Prerequisites: Dynamic Programming

Dynamic programming is very powerful and more efficient than
recursion for problems that recompute multiple values. However
sometimes it is difficult to find an efficient dynamic programming
solution and we will examine problems where we will need higher
dimensions.

21.2.1 Longest Common Subsequence

A subsequence is a subset of the original sequence that is in the
same order. For example in the string ”abcdefghi”, ”aeg” is a
subsequence but ”eaq” is not because it is not in order.

The longest common subsequence between two strings A and B
is the longest subsequence in A that is also in B.

For example, given A=”xyaaaabcdeg”, B=”bcaaaaefgxy” the longest
common subsequence is ”aaaaeg”.

xyaaaabcde_g

bcaaaa___efgxy

If we try to use greedy we will see it doesn’t work. For example,
if we use try to take as much as B as we can, we see that we will
get BCEG or if we try to take as much as A we get XY.

CHAPTER 21. DYNAMIC PROGRAMMING 254

Let first write a formal definition of the problem, given two strings
A and B each with lengths N and M respectively, we want to find
the longest common subsequence between them.

The base case is very simple: if A or B are empty strings, then
trivially, the longest common subsequence is an empty string.

Now suppose that A and B are non empty strings. Let’s consider
the case that A and B both start with the same letter (A[0] ==
B[0]). It can be seen that the longest common subsequence must
also begin with that letter. Thus the longest common subsequence
is A[0] plus the longest common subsequence from A[1..N] and
B[1..M]. However, suppose that A and B do not start with the
same letter (A[0] != B[0]). Then the LCS of A and B is either the
LCS of A[1..N] and B or the LCS of A and B[1..M] and we take
the longer of the two. Thus, this is our recurrence relation.

Formalization

Let lcs(A, B) be the longest common substring between A

and B.

Let N be the length of A and M be the length of B.

Let max(A, B) be the string with longer length.

lcs(’’, A) = ’’

lcs(B, ’’) = ’’

lcs(A, B) = A[0] + lcs(A[1..N], B[1..M]) if A[0] == B[0]

lcs(A, B) = max(lcs(A, B[1..M]), lcs(A[1..N], B)) otherwise

Example:

lcs(’AB’, ’CAB’)

= max(lcs(’AB’,’AB’), lcs(’A’, ’CAB’))

= max(’A’ + lcs(’B’, ’B’), max(lcs(’A’, ’AB’), lcs(’’,

’CAB’))

= max(’A’ + ’B’ + lcs(’’, ’’), max(’A’ + lcs(’’, ’B’)),

’’))

CHAPTER 21. DYNAMIC PROGRAMMING 255

= max(’AB’, max(’A’, ’’))

= max(’AB’, ’A’)

= ’AB’

Example:

lcs(’XY’, ’AB’)

= max(lcs(’XY’, ’B’), lcs(’Y’, ’AB’))

= max(max(lcs(’XY’,’’), lcs(’Y’, ’B’)), max(lcs(’Y’,’B’),

lcs(’’, ’AB’))

= ’’

Note that in the second example, we are recomputing lcs(’Y’, ’B’)
twice. If we have longer strings, we will be recomputing the same
values many times! We can rewrite the solution with dynamic
programming by building up the solution instead of using recur-
sion and eliminating recomputation.

Let lcs[x][y] be the least common subsequence of A[0..x]

and B[0..y].

Let N be length of A and M be length of M

// Base case

for i from 1 to N

lcs[i][0] = ’’

// Base case

for i from 1 to M

lcs[0][i] = ’’

for x from 1 to N

for y from 1 to M

if A[x - 1] == B[j - 1]

lcs[x][y] = lcs[x - 1][y - 1] + A[x - 1]

else

lcs[x][y] = max(lcs[x - 1][y], lcs[x][y - 1]

Example (string lengths):

CHAPTER 21. DYNAMIC PROGRAMMING 256

A = ’xygz’

B = ’yabz’

x y g z

/ 0 1 2 3 4

0 0 0 0 0 0

y 1 0 0 1 1 1

a 2 0 0 1 1 1

b 3 0 0 1 1 1

z 4 0 0 1 1 2

21.2.2 Zero-One Knapsack Problem

In the Dynamic Programming section, we examined the knapsack
problem:

Given an unlimited amount of N items with positive weights and
values, we want to find the maximum value we can hold with a
capacity.

Let’s change the problem slightly such that there is only one of
each object. The problem becomes slightly more difficult because
we need to take into account whether or not we have used an
object before.

Given only one copy each of N items with positive weights and
values, we want to find the maximum value we can hold with a
capacity W.

The base case is simple, if there are no more items or the total
capacity is less than or equal to 0, then the maximum value is 0.
Suppose we have items remaining and total capacity is positive.
We can either take or leave the first item and we want the max-
imum value of both actions. If we take the item, the value will
be the value of the item plus the maximum value of the rest of
the items that fit in the rest of the space in the knapsack minus
the space of the item we took. If we leave the item, the value

CHAPTER 21. DYNAMIC PROGRAMMING 257

will be the maximum value of the rest of the items that fit in the
knapsack. Thus we have our recurrence relation.

Let knapsack(items[], W) be the maximum value of items

that fit in a maximum capacity of W.

Let N be the number of items.

Base case:

knapsack(items[], w) = 0 if w <= 0

knapsack([], w) = 0

Recursion:

takeValue = knapsack(items[1..N], w - items[0].weight) +

items[0].value

leaveValue = knapsack(items[1..N], w)

knapsack(items[], w) = max(takeValue, leaveValue)

However, we are recomputing multiple values and we can elim-
inate this by building the solution upwards using dynamic pro-
gramming.

Let knapsack[N][W] be the maximum value of N items that

fit in a maximum capacity of W.

Let items be an array of N items with positive weights and

values.

for i from 0 to W

knapsack[0][i] = 0

for n from 1 to N

knapsack[n][0] = 0

for w from 1 to W

takeValue = knapsack[n - 1][w - item[n - 1].weight] +

item[n - 1].value

leaveValue = knapsack[n - 1][w]

knapsack[n][w] = max(takeValue, leaveValue)

Part VIII

Greedy Algorithm

258

Chapter 22

Greedy Algorithm

22.1 Greedy Algorithm

A greedy algorithm is an algorithm that always selects the optimal
next step towards the solution based on some property. Greedy
problems are generally straightforward and easy to solve once
you determine what property to maximize. However, the most
difficult part is proving that greedy is the optimal solution for all
cases.

22.1.1 Coin Problem

A cashier is given a $20 bill from their customer whose total
comes to $14.67. How can the cashier give the change in the least
amount of coins? Let’s say our currency has denominations 1
cent, 5 cent, 10 cent, 25 cents, $1 and $2.

We can greedily use the biggest denomination as possible until we
have no more coins. We need to make change for $5.33.

259

CHAPTER 22. GREEDY ALGORITHM 260

$5.33 - 2 · $2

= $1.33 - 1 · $1

= $0.33 - 1 · $0.25

= $0.08 - 1 · $0.05

= $0.03 - 3 · $0.01

= 0

The coin problem can only be solved greedily if the denominations
fit nicely inside each other. Otherwise, the solution becomes more
complicated. (See Dynamic Programming)

Implementation

int minCoins(int value) {

int denoms[] = { 1, 5, 10, 25, 100, 200 };

int totalCoins = 0;

// Iterate backwards by highest denomination.

for (int i = denoms.length; i >= 0; i--) {

// Calculate highest number of coins that can be used.

int coins = value / denoms[i];

// Increment number of coins.

totalCoins += coins;

// Subtract value of coins.

value -= denoms[i] * coins;

}

return totalCoins;

}

22.1.2 Interval Scheduling

Let’s say you are at a festival and there are several special events
that you want to attend, however the events may overlap at cer-

CHAPTER 22. GREEDY ALGORITHM 261

tain times. How can you pick the events that you go to such that
you attend as many events as possible?

For example, we have the events below shown as a intervals on a
timeline.

The first approach may seem to be greedily choosing the shortest
intervals that do not overlap:

Another approach may be taking the earliest available event:

The above approaches seem to work, but they do not offer the
optimal solution. We notice that we want to fit as many events

CHAPTER 22. GREEDY ALGORITHM 262

as possible so we want to pick events that end as quickly as pos-
sible. So we can greedily select events with the earliest ending
time.

Note that although this approach does not give us the longest
time spent at events, it gives us the most events that can be
visited.

Implementation

class Interval implements Comparable<Interval> {

int start, end;

public Interval(int start, int end){

this.start = start;

this.end = end;

}

public int compareTo(Interval i) {

return end - i.end;

}

}

public int maxEvents(Vector<Interval> intervals) {

// Sort intervals by earliest end time.

Collections.sort(intervals);

int curTime = 0;

int events = 0;

for (int i = 0; i < intervals.size(); i++) {

// Find next interval greater or equal to current time.

CHAPTER 22. GREEDY ALGORITHM 263

while (i < intervals.size() && intervals.get(i).start

< curTime) {

i++;

}

// Set current time as end of interval.

curTime = intervals.get(i).end;

// Increment number of intervals.

events++;

}

return events;

}

22.1.3 Couple Matching Problem

You are organizing a dance with a group of 10 men of varying
heights and a group of 10 women of varying heights. The dance
is done in pairs (a man and a women) and it is best performed
when the pair is as close height as possible.

We can minimize the average height difference by sorting men
and woman by height and then matching them.

CHAPTER 22. GREEDY ALGORITHM 264

22.1.4 Exercises

1. Given N points and an interval size of S, find the minimum
number of intervals required to cover all the points.

2. Given the future schedule of a stock, and starting with C
dollars, what is the maximum amount of money you can
make given that there is no commission?

For example you are given $1000, the future prices of a stock
are: 100, 103, 105, 106, 101, 99, 95, 97.

• Buy 10 x $100 [$0]

• Sell 10 x $106 [$1060]

• Buy 11 x $95 [$15]

• Sell 11 x $97 [$1082]

3. You are on a road trip that is D km with N gas stations
along the way and your gas tank has capacity C. Assuming
that you start with a full tank, travel 1km/min, use 1L/km
and the gas station fill rate is 5L/min, find the quickest time
you can finish the trip in.

CHAPTER 22. GREEDY ALGORITHM 265

For example, if the total distance is 200km apart with tank
capacity 80L and with 5 gas stations at 10km, 40km, 50km,
90km, 150km, the minimum time it will take is 224 minutes.

Appendix A

Cheat Sheet

Sorting

Name Runtime

Bubble Sort O(n2)
Selection Sort O(n2)
Insertion Sort O(n2)
Heap Sort O(n log n)
Merge Sort O(n log n)
Quick Sort O(n log n)

Vector

Operation Get Push Pop Insert Remove

Time Complexity O(1) O(1) O(1) O(n) O(n)

Linked List

Operation Get Push Delete Insert

Time Complexity O(n) O(1) O(1) O(1)

266

APPENDIX A. CHEAT SHEET 267

Hash Set

Operation Membership Insertion Deletion

Time Complexity O(1) O(1) O(1)

Tree Set

Operation Membership Insertion Deletion

Time Complexity O(log n) O(log n) O(log n)

Heap

Operation Resize Push Pop Heapify

Time Complexity O(n) O(log n) O(log n) O(n)

Shortest Path

Algorithm Time Cycles?

Floyd Warshall O(n3) Yes
Bellman Ford O(n2) Yes
Dijkstra’s O(n log n) No

	1 Getting Started
	1.1 Getting Started
	1.1.1 Format

	2 Interviews
	2.1 Interviews
	2.1.1 Interview Preparation
	2.1.2 Resume
	2.1.3 Before the Interview
	2.1.4 During the Interview - Part 1: Behavioural
	2.1.5 During the Interview - Part 2: Technical
	2.1.6 End Interview

	I Fundamentals
	3 Fundamentals
	3.1 Runtime and Memory
	3.1.1 Limits
	3.1.2 Big O Notation
	3.1.3 Runtime and Memory Analysis
	3.1.4 Exercises

	II Recursion
	4 Recursion
	4.1 Recursion
	4.1.1 Factorial
	4.1.2 Sum of digits of a string
	4.1.3 Count
	4.1.4 Calculate Exponential
	4.1.5 Exercises

	4.2 Advanced Recursion
	4.2.1 Number of paths
	4.2.2 Towers of Hanoi
	4.2.3 Permutations
	4.2.4 Exercises

	III Data Structures
	5 Stack
	5.1 Stack
	5.2 Vector
	5.2.1 Class
	5.2.2 Resize
	5.2.3 Add Element
	5.2.4 Pop
	5.2.5 Remove
	5.2.6 Get Element
	5.2.7 Insert Element
	5.2.8 Exercises

	5.3 Exercises

	6 Queue
	6.1 Queue
	6.2 Linked List
	6.2.1 Link Class
	6.2.2 LinkedList Class
	6.2.3 Push
	6.2.4 Pop
	6.2.5 Get
	6.2.6 Delete
	6.2.7 Exercises

	6.3 Exercises

	7 Sets
	7.1 Sets
	7.2 Hash Set
	7.2.1 Class
	7.2.2 Hash code
	7.2.3 Resize
	7.2.4 Insert
	7.2.5 Contains
	7.2.6 Remove
	7.2.7 Exercises

	7.3 Tree Set
	7.4 Binary Search Tree
	7.4.1 Class
	7.4.2 Insert
	7.4.3 Contains
	7.4.4 Remove
	7.4.5 Print Tree
	7.4.6 Exercises

	7.5 Exercises

	8 Maps
	8.1 Maps
	8.2 Hash Map
	8.2.1 Class
	8.2.2 Resize
	8.2.3 Put
	8.2.4 Get
	8.2.5 Remove
	8.2.6 Exercises

	8.3 Tree Map
	8.3.1 Exercise

	8.4 Exercises

	9 Priority Queue
	9.1 Priority Queue
	9.2 Heap
	9.2.1 Class
	9.2.2 Resize
	9.2.3 Swap
	9.2.4 Push
	9.2.5 Pop
	9.2.6 Heapify
	9.2.7 Exercises

	9.3 Exercises

	IV Sorting
	10 Slow Sorts
	10.1 Bubble Sort
	10.1.1 Implementation

	10.2 Selection Sort
	10.2.1 Implementation

	10.3 Insertion Sort
	10.3.1 Implementation

	11 Fast Sorts
	11.1 Heap Sort
	11.1.1 Implementation

	11.2 Merge Sort
	11.2.1 Implementation
	11.2.2 Exercises

	11.3 Quick Sort
	11.3.1 Implementation
	11.3.2 Exercises

	12 Super Slow Sorts
	12.1 Bozo Sort
	12.1.1 Implementation

	12.2 Permutation Sort
	12.2.1 Implementation

	12.3 Miracle Sort
	12.3.1 Implementation

	13 Exercises

	V Graph Theory
	14 Graph Representations
	14.1 Adjacency Matrix
	14.1.1 Implementation

	14.2 Adjacency List
	14.2.1 Implementation

	15 Shortest Path
	15.1 Dijkstra's
	15.1.1 Implementation
	15.1.2 Practice Exercises

	15.2 Bellman Ford
	15.2.1 Implementation
	15.2.2 Exercises

	15.3 Floyd Warsahll
	15.3.1 Implementation
	15.3.2 Exercises

	16 Minimum Spanning Tree
	16.1 Prim's
	16.1.1 Implementation
	16.1.2 Exercises

	16.2 Kruskal
	16.2.1 Implementation
	16.2.2 Exercises

	16.3 Exercises

	17 Topological Sorting
	17.1 Topological Sorting
	17.1.1 Implementation

	18 Connected Components
	18.1 Connected Components
	18.1.1 Implementation

	19 Cycle Detection
	19.1 Cycle Detection
	19.1.1 Implementation

	VI Searches
	20 Searches
	20.1 Binary Search
	20.1.1 Example
	20.1.2 Generic Binary Search
	20.1.3 Finding Number in Sorted Array
	20.1.4 Exercises

	20.2 Ternary Search
	20.2.1 Implementation

	20.3 Depth First Search
	20.3.1 Implementation
	20.3.2 Exercises

	20.4 Breadth First Search
	20.4.1 Implementation
	20.4.2 Exercises

	20.5 Flood Fill
	20.5.1 Bucket Fill
	20.5.2 Exercises

	20.6 Backtracking
	20.6.1 General Solution
	20.6.2 List all sets
	20.6.3 N Queen Problem
	20.6.4 Exercises

	VII Dynamic Programming
	21 Dynamic Programming
	21.1 Dynamic Programming
	21.1.1 Fibonacci Sequence
	21.1.2 Coin Problem
	21.1.3 Number of Paths
	21.1.4 Knapsack Problem
	21.1.5 Exercises

	21.2 Advanced Dynamic Programming
	21.2.1 Longest Common Subsequence
	21.2.2 Zero-One Knapsack Problem

	VIII Greedy Algorithm
	22 Greedy Algorithm
	22.1 Greedy Algorithm
	22.1.1 Coin Problem
	22.1.2 Interval Scheduling
	22.1.3 Couple Matching Problem
	22.1.4 Exercises

	A Cheat Sheet

